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� Isotope separation is a very important process in nuclear engineering.
� Classical estimations of energy costs for such processes are very rough.
� Finite-time thermodynamics allows to obtain more realistic estimates.
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We analyze limiting capabilities of mechanical separation processes using finite-time thermodynamics
and obtain estimates for the lower bound of the energy consumption for systems of a given productivity.
We show that this consumption does not tend to zero when the molar fraction of one of the components
tends to unity. The estimates obtained are used to analyze multistage separation processes, containing
recycles, especially, isotope separation systems. For such systems we obtain relations between fluxes,
mass transfer surfaces, and stage number. These relations are deduced from the condition of minimum
dissipation, assuming that the enrichment factor is constant. We also obtain the optimality condition
for the sequence of separations needed for a multicomponent mixture in a mechanical separation
systems.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Despite the fact that the first works on optimization thermody-
namics (thermodynamics at finite time) were published in the
early 1960s, and since then this section of irreversible thermody-
namics has been actively developing (Andresen, 1983; Andresen,
2011), this field of thermodynamics and its applications to techno-
logical systems are far from being exhausted.

Works considering the shape of heat engine cycles, for which
their output power is maximum were published in France at the
end of the nineteenth century (Moutier, 1872). However it was
only in connection with the development of nuclear energy that
this problem acquired practical importance and, starting with the
well-known article by I. I. Novikov in the Journal of Nuclear Energy
(Novikov, 1954), a huge number of studies were devoted to the
limiting capabilities and optimal cycles of thermal machines. Later,
largely thanks to the efforts of the schools of S. Berry in the USA
and L. Rozonoer in Russia, the problems of the limiting capabilities
of thermodynamic systems of different nature with nonzero fluxes
were recognized as a separate area of thermodynamics (Andresen
et al., 2000).

Humanity spends a significant part of its energy consumption
on separation processes. These processes are very diverse in terms
of the nature of the energy used and in terms of design.
Absorption- and adsorption–desorption cycles, distillation, evapo-
ration, drying, zone melting, etc. use thermal energy for separation
(they are called thermal); in centrifugation and membrane separa-
tion mechanical energy is being utilized (these systems are called
mechanical). Bosnjakovic (Bosnjakovic, 1965) pointed out that the
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Nomenclature

a ratio of enrichment factors
g efficiency
c fraction
k Lagrange multipliers
l chemical potentials, J/mol
r entropy generation rate, W/s
s time, s
u dissipation factors, J/(mol�K)
A molar energies, J/mol
c; d characteristic coefficients
C mole fraction
F size of a stage
g material fluxes, mol/s

k mass transfer coefficients, mol2�K/(J�s)
K specific mass transfer coefficients, mol2�K/(J�s�m2)
L Lagrange function
m; n number of steps/stages
M square of the reduced flux, W�m2/K
N numbers of moles, mol
p power outputs, W
P pressure, Pa
R gas constant, 8.31 J/(K�mol)
S total entropy generation, J/K
T temperatures, K
x enrichment factor
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largest unproductive energy losses in industry are in chemical and
metallurgical processes. For example, separating oil takes about six
percent of the energy it contains.

Analyses of energy losses in these industries were carried out
using so-called exergy analysis (El-Sayed and Gaggioli, 1989). The
exergy approach allows one to find irreversible losses in a designed
or operating system and thus to compare systems in terms of the
magnitude of these losses. However, this does not say anything
about how and to what limit irreversible losses can be reduced,
taking into account restrictions on the size of devices and their per-
formance, nor how to organize the process to keep these losses to a
minimum.

An estimate of the minimum energy required to separate a mix-
ture of a given composition can be obtained using the methods of
reversible thermodynamics. These estimates are usually quite
rough, and they do not take into account kinetic factors (laws
and coefficients of heat and mass transfer, system performance,
etc.). In some cases, irreversible estimates differ not only quantita-
tively, but also qualitatively from reversible ones. E.g. for diluted
mixtures in which the molar fraction of one of components is close
to unity, irreversible estimates in contrast to reversible estimates
do not tend to zero but to a finite limit depending on the kinetic
coefficients. This fact finds confirmation in real systems, where
for diluted mixtures, for example for separation of uranium iso-
topes, the actual energy consumption exceeds the reversible esti-
mates by thousands of times (Chambadal, 1958). Figuratively
speaking, it is extremely difficult to find a needle in a haystack.

Thermodynamic balances (material, energy and entropy) of
mechanical and thermal separation systems are different since in
the first case the flux of expended energy is not coupled with the
flux of entropy and is not included in the entropy balance of the
system (Tsirlin and Sukin, 2014).

Typically, processes in mechanical systems may be considered
isothermal. In thermal systems, the energy flux is supplied to the
system at one temperature and removed at a different temperature
and is coupled with entropy supply and removal. Irreversible
losses associated with the supply and removal of heat increase
the work of separation, so that for thermal separation processes
the productivity reaches a maximum with an increase in heat
fluxes and then decreases.

Taking into account and minimizing irreversibility not only
allows one to obtain an estimate of the minimal expended heat
for a fixed productivity, but also to find the thermodynamic limit
of productivity above which the process cannot operate at any heat
input. The dependence of the maximum process productivity on
energy consumption or the minimum energy consumption on pro-
ductivity is the thermodynamic boundary of the set of realizable
process modes (reachable set).
2

The purpose of this work is to obtain such a lower estimate, tak-
ing into account irreversibility factors, for separation operation in
mechanical multistage systems, such as diffusion and centrifugal
isotope separation systems. Further, it will construct a feasibility
set for them, as well as to obtain a rule for choosing the order of
separations of multicomponent mixtures while minimizing energy
costs.

We follow the general methodology of finite-time thermody-
namics(Berry et al., 1999; Amelkin et al., 2001). The algorithm of
solving such problems consists of two stages:

� express the sought-for estimates of the flux intensity through
the generation of entropy using the equations of thermody-
namic balances for matter, energy, and entropy;

� find the minimum possible entropy generation rmin as a func-
tion of the fluxes at given constraints (on the surface of heat
and mass transfer, on the intensity of some flows, etc.).

Substitution of the resulting relations into the thermodynamic
balance equations determines the limit of the capabilities of the
thermodynamic system.

This procedure is very general and can be applied to any phys-
ical system. It was shown (Rozonoer and Tsirlin, 1983) that there
are two important categories of such systems: thermal ones, where
the energy supplied is heat (e.g. distillation and thermal diffusion),
and mechanical ones, where energy supplied is work (e.g. mechan-
ical or electric). Many problems considering optimization of sys-
tems of the first kind were stated and solved in previous works
by the present authors (Schaller et al., 2002; Tsirlin and Sukin,
2014) as well as by colleagues (Dhole and Linnhoff, 1993; Rivero,
1995; Schack et al., 2020).

2. Reachable set of mechanical separation systems

Assumptions and problem statement. Consider the initially
reversible isothermal separation process. We will assume that
the mixture and its components are close in their properties to
ideal gases, so that the chemical potential of the i-th component
can be written in the form

li T; P;Cið Þ ¼ l0i Tð Þ þ RT ln PCi; i ¼ 1; . . . ;n; ð1Þ
where Ci is the mole fraction of the i-th component, T and P — the
temperature and pressure of the mixture.

We assume that the temperature and pressure of the system do
not change during the separation process and it is adiabatic (heat is
not supplied or removed). The work of separating a mole of a mix-
ture in such a system with an arbitrarily slow process is equal to
the change in its free energy (Gibbs energy), i.e. for one mole of
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the mixture, the total increment of chemical potentials
(Bosnjakovic, 1965). This work can be expressed through the vec-
tor of initial mole fractions C0 ¼ C01; . . . ;C0i; . . . ;C0nð Þ and the vec-
tors of mole fractions in the products after separation
C1 ¼ C11; . . . ;C1i; . . . ;C1nð Þ and C2 ¼ C21; . . . ;C2i; . . . ;C2nð Þ.

Let us denote by c the fraction of the mixture that entered the
first subsystem, and by 1� cð Þ the fraction that entered the second
subsystem. Then the change in molar energy is

DA0 ¼
Xn
i¼1

cC1ili T; P;C1ið Þ þ 1� cð ÞC2ili T; P;C2ið Þ � C0ili T; P;C0ið Þ� �
:

ð2Þ
If we substitute expressions for chemical potentials in (2) and take
into account that the material balance conditions must be satisfied
for all components

cC1i þ 1� cð ÞC2i ¼ C0i; i ¼ 1; . . . ; n; ð3Þ
then the terms l0i and RT ln P will cancel and the expression (2)
takes the form

DA0 ¼ RT
Xn
i¼1

cC1i lnC1i þ 1� cð ÞC2i lnC2i � C0i lnC0ið Þ: ð4Þ

The product fraction is related to the mole fractions of flows as:

c ¼ C0i � C2i

C1i � C2i
: ð5Þ

For complete separation, i.e. when one component is selected for
each of the subsystems, its initial fraction is ci ¼ C0i, and final the
mole fraction is Cii ¼ 1. From formula (4) we obtain the work of sep-
arating the mixture into pure components in a reversible process
(Gibbs reversible work of separation):

A0 ¼ RT
Xn
i¼1

C0i lnC0i: ð6Þ

By comparing (4) and (6) it follows that the reversible work of
incomplete separation is equal to the difference between the rever-
sible work of complete separation of the initial mixture and the
average with weights c and 1� cð Þ reversible work of complete sep-
aration of the mixture into subsystems 1 and 2

DA0 ¼ A0 � cA01 � 1� cð ÞA02: ð7Þ
The separation energy costs thus found represent a reversible lower
estimate of the actual costs. For separation of a mixture of two com-
ponents (binary), this estimate depends on the mole fraction of C0

of one of them in the initial mixture as shown in Fig. 1 (curve Airr).
Fig. 1. The minimum work of complete separation A of a binary mixture as a
function of the initial mole fraction of one of its components C0. The curve A0

assumes reversible operation, Airr is an example of irreversible operation with dA
being the difference between the two, i.e. the cost of the irreversibility.

3

Reversible estimates do not take into account kinetic factors
(heat and mass transfer coefficients, flow rates, etc). They depend
only on the composition of the mixture before and after separation.
Meanwhile, taking into account these factors leads to the irre-
versibility of the processes, and, consequently, to an increase in
energy costs. Separation work in an isothermal process for an adi-
abatically isolated system can be expressed by the Stodola formula
(Bosnjakovic, 1965) through the reversible work A0 and the
increase in the entropy of the system DS, as

Airr ¼ A0 þ TDS ¼ A0 þ dA; ð8Þ
where T is the environmental temperature.

The expression for dA as a function of the mixture composition
and of the duration of the process is obtained below.

If we go from quantities to fluxes, then the separation power in
such a system is

pirr ¼ p0 þ Tr; ð9Þ
where r is the entropy generation rate in the system and p0 is the
reversible separation power.

The concept of reversible power requires an explanation, since
for a reversible process we usually take the intensity of flows to
be vanishingly small. However, we could also achieve a vanishingly
small entropy production with a system of arbitrarily large size
and kinetic coefficients proportional to this size while keeping
the total turnover constant. This allows a non-vanishing reversible
power even in the reversible limit.

To estimate the energy consumption for separation in the class
of irreversible processes, it is necessary to find the minimum
entropy generation for a given process duration or a given flow rate
as well as given heat and mass transfer coefficients and then use
the formulas (8), (9).

Let us consider the design scheme (Fig. 2), consisting of the ini-
tial mixture and msubsystems into which flows are directed after
separation, connected by a device that implements the separation
process (we will call it ‘‘separation device”).

The separation device receives energy from the outside and cre-
ates fluxes of matter. We will assume that the composition C0 and
the total number of moles N to be separated at the beginning of the
process, the composition of the mixture in each jth subsystem Cj at
the end of the process, and the number of moles Nj arriving to each
subsystem, as well as the duration of the process s are set and sat-
isfy the material balance conditions (3).

The driving force for the fluxes of matter is the chemical poten-
tial difference between the separation device and the initial mix-
ture and between the separation device and the subsystems. In
Fig. 2. Scheme of mixture separation into msubsystems. C and N are the mole
fractions of one of the components and the number of moles treated, respectively,
of the input (0) and output fractions (j). g are the fluxes of the respective flows.
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an isothermal process, the chemical potential can be controlled by
changing the pressure.

2.1. Separation into two streams

For simplicity, we will consider only two subsystems and a bin-
ary mixture. The composition of the mixture in the second subsys-
tem is completely determined by its initial composition and the
composition of the separated flow obtained in the first subsystem
due to mass balance. The sum of the mole fractions of two sub-
stances in each subsystem is equal to unity (C2 ¼ 1� C1). Let us
denote by Nthe number of moles of the mixture to be separated,
and by c the fraction of the product that ends up in the first
subsystem.

Let us denote the difference in chemical potentials for the i-th
substance as

Dl0i ¼ l0i � lw
0i

� �
; Dl1i ¼ lw

1i � l1i

� �
; i ¼ 1;2:

Here, the index wmarks the chemical potentials of the separation
device at the boundaries of its contact with the reservoir and
subsystem.

The entropy generation associated with the creation of a flux
from the reservoir to the first subsystem is

DS01 ¼ 1
T

Z s

0

X2
i¼1

g01Dl0i þ g11Dl1i

� �
dt: ð10Þ

where gj1 are the fluxes of components 0/1 from the source to sub-
system 1.

The parameters of the separation device do not change, so thatZ s

0
g0idt ¼

Z s

0
g1idt; i ¼ 1;2: ð11Þ

The total amount of the i-th substance transferred to the subsystem
during the s time is given and is equal to the product of the number
of moles N sð Þc transferred to the subsystem by the mole fraction
C1i sð Þ.

Optimal solution
The problem of the minimum of DS1under the conditions (11)

with controls g0i P 0; g1i P 0, in the general case turns out to be
a problem of optimal control, since l1depends on the mole fraction
vector C1of the mixture in subsystem, and that, in turn, changes
depending on the composition and intensity of the flow g1 tð Þ. How-
ever, this problem is greatly simplified in the common case, when
the differences in chemical potentials Dl0iand Dl1iare uniquely
related to the fluxes g0iand g1i, respectively. In all cases where
the processes are close to equilibrium, the fluxes are proportional
to the driving forces (Onsager kinetics).

More generally

Dl0i

T
¼ u0i g0ið Þ; Dl1i

T
¼ u1i g1ið Þ; du

dg
> 0:

where u gð Þ is a dissipation factor that relates the dissipation to the
flux g. This depends on the type of flux, mechanical details, and the
substance.

The problem (10), (11) breaks down into subproblems of the
form

DSi ¼ 1
T

Z s

0
ri gið Þdt ! min =

R s
0 gidt ¼ N1C1i

m ¼ 0;1; i ¼ 1;2;
ð12Þ

where ri ¼ gmiui gið Þ is a function that determines the dissipation.
Along the optimal solution of the problem (12), its Lagrange

function

L ¼
X
i

ri gið Þ þ kgið Þ
4

is stationary with respect to gi.
The function riis concave with respect to gi, since it is the pro-

duct of the flux and its driving force ui, which monotonically
increases with gi. Therefore, Lhas a single minimum, and the opti-
mal flux giis constant and equal to NCic

s for any uithat increases with
the flow rate.

Consider the Onsager kinetics, when the mass transfer flux is
proportional to the thermodynamic driving force, i.e. the chemical
potential difference divided by the temperature T. In this case

gi ¼ ki
Dli

T
) ui ¼

gi

ki
: ð13Þ

For isothermal processes in membrane systems and mixtures of
ideal gases, the difference in chemical potentials of the i-th compo-
nent is equal to the logarithm of the ratio of its partial pressures on
both sides of the membrane. In centrifugation systems, the pressure
difference is created by centrifugal forces, which depend on the
rotational speed of the centrifuges and the molecular weight of
the (London, 1961; Halle, 1980) components. In both cases, the val-
ues of the effective mass transfer coefficients (the ratio of the mass
transfer flow to the difference in logarithms of pressures) can be
found from experimental data.

The minimum entropy generation corresponding to the solution
(13) is

DSmin ¼
X
i

DSmin
i ¼ s

T

X
i

ri
NCic
s

� �
; ð14Þ

and the minimum work of separation for the first subsystem is

A1min ¼ A0Ncþ s
X
i

ri
NCic
s

:

� �
: ð15Þ

Since the optimal flow values are determined through the given ini-
tial and the final states of the system, their substitution into the
equation rji gji

� �
allows one to improve the estimate (15).

For a process occurring in the neighborhood of equilibrium and
when the fluxes obey Onsager kinetics (13), it follows from (15)
that for the first subsystem

A1min ¼ A10Ncþ s
X2
i¼1

g2
i

1
k0i

þ 1
k1i

� �
¼ A10Ncþ 1

s
X2
i¼1

N2c2C2
i

ki
; ð16Þ

where the equivalent mass transfer coefficient for the i-th compo-
nent is

ki ¼ k0ik1i
k0i þ k1i

: ð17Þ

Expression (16) can be rewritten as

A1min ¼ A10N sð Þcþ N2c2

s
X2
i¼1

C2
1i sð Þ
k1i

; ð18Þ

where the molar reversible work of separation is

A10 ¼ RT
X2
i¼1

C1i sð Þ lnC1i sð Þ � C0i lnC0i½ �: ð19Þ

In exactly the same way we obtain for the second subsystem:

A2min ¼ A20N sð Þ 1� cð Þ þ N2 1� cð Þ2
s

X2
i¼1

C2
2i sð Þ
k2i

; ð20Þ

Here the molar reversible work of separation is

A20 ¼ RT
X2
i¼1

C2i sð Þ lnC2i sð Þ � C0i lnC0i½ �: ð21Þ

Further we have C1icþ C2i 1� cð Þ ¼ C0i; i ¼ 1;2.
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The total irreversible work of separation has the form corre-
sponding to Airr in Fig. 1.

After passing from molar quantities to fluxes, we obtain an
expression for the power needed for separating a binary mixture
into two flows by an irreversible process in the form of a parabola:

pmin ¼ A0g þ g2 c2
X2
i¼1

C2
1i

k1i
þ 1� cð Þ2

X2
i¼1

C2
2i

k2i

" #
¼ cg þ dg2

: ð22Þ

Here gis the flux of the mixture to be separated. For definiteness, we
will assume that the flow to the first subsystem is enriched with the
target component, the mole fraction of which is C11, while

k11 > k12(enrichment condition).
The coefficients of the parametrized boundary of the realizabil-

ity set are

c ¼ A0 ¼ RT
X2
i¼1

cC1i lnC1i þ 1� cð ÞC2i lnC2i � C0i lnC0i½ �; ð23Þ
d ¼ c2
X2
i¼1

C2
1i

k1i
þ 1� cð Þ2

X2
i¼1

C2
2i

k2i
:

Some mass transfer coefficients can be close to zero (the component
cannot be separated from the mixture) or to infinity (creating a
component flow does not require energy consumption).

Only those processes are realizable for which the energy consump-
tion is not lower than the one calculated by the formula (22). The real-
izable processes lie above the boundary shown in Fig. 3.

The reversible efficiency of the process (number of moles of the
separated mixture per unit of consumed energy) g0 ¼ 1

c. Taking into
account the irreversibility, the efficiency of the process is equal to:

g ¼ g
p
¼ 1

c þ dg
: ð24Þ

Note that the irreversible estimate of the molar work of separation
calculated by Eq. (18) is discontinuous. It is equal to zero for the
case when the mole fraction of one of the components is zero, but
at an arbitrarily low mole fraction of any component (for diluted
mixtures) it takes a finite value (see the Airrcurve in Fig. 1). This
explains why the inaccuracy of reversible estimates is especially
large for such dilute mixtures.

The result that the dependence of the system performance on
energy consumption is close to parabola makes it possible to find
the coefficients cand dfrom experimental data and use the result-
ing dependence when solving problems of structure optimization
for many separation systems.
Fig. 3. The reachable set for mechanical separation systems is the hatched area
above the curve. At a certain operation flux g the minimal dissipation is at least pmin .
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3. Multistage mechanical systems. Isotope separation

In many cases, the separation process is implemented as a sys-
tem of successive interconnected stages (Tsirlin et al., 2016). At
each stage, the mixture stream entering it is divided into a stream
enriched in the target component and one depleted in the target
component. There are many well-known processes suitable for iso-
tope separaton: distillation, centrifugation, diffusion, etc. Our pur-
pose is to put several well-known separation methods on the same
footing so that an educated quantitative choice between different
processes as well as the sequence of multiple separations can be
made without recourse to tradition, rule of thumb, and ‘‘we usually
do”.

If a feed stream is fed to the inlet of such a multistage system,
then the enriched flow entering each subsequent stage decreases
and as its mole fraction increases. At the same time, the mole frac-
tion in the depleted effluent streams of each subsequent stage will
exceed the mole fraction in the feed. Therefore, the depleted
stream after each stage is recycled, and the feed stream is fed
not to the initial, but to an intermediate stage of the cascade
matching its molar fraction. The structure of such a multistage sys-
tem is shown in Fig. 4.

We assume that the given compositions C0;Cf ;Cout , and hence
the enrichment factor x Cð Þ ¼ C

1�Care the mole fraction ratios of the
target component to the mole fraction of the remaining component
in the binary mixture, for the feed stream and output streams.

Minimum dissipation conditions require that the streams mix-
ing at the feed point and at the points of entry of the recycle
streams have the same composition (uniform mixing condition).
For binary mixtures, this requirement can be fulfilled exactly, but
for multicomponent mixtures only approximately.

Let us write down the material balance equations for the j-th
stage, taking into account the condition of homogeneity of mixing:

gj þ gr
j ¼ gj�1 þ gr

jþ1; gjCj þ gr
j Cj�2 ¼ gj�1 þ gr

jþ1

� �
Cj�1; ð25Þ

Cj�1 ¼ Cr
jþ1;Cm ¼ Cr

mþ2 ¼ C0; j ¼ 2; . . .m;mþ 2; . . . ;n� 1;

where Cis the mole fraction of the target component.
The feed is introduced into the system between stages mand

mþ 1, the depleted flow (waste) is removed after the first stage,
and the target enriched flow after the n-th stage. Like in distilla-
tion, the section of the system with the mixture lighter than the
feed is called stripping, and the section with the mixture heavier
than the feed is called rectifying.

The conditions (25) for the stripping section imply the recur-
rence relations:

gr
jþ1 ¼ gr

j
Cj � Cj�2

Cj � Cj�1
� gj�1; gj ¼ gr

j
Cj�1 � Cj�2

Cj � Cj�1
ð26Þ

with boundary conditions for j ¼ 1:

gj�1 ¼ 0; Cr
j ¼ Cout; gr

j ¼ gout ¼ 1� cð Þg0:

Taking these conditions into account, we obtain:

gr
2 ¼ gout

C1 � Cout

C1 � Cr
2

; g1 ¼ gout
Cr
2 � Cout

C1 � Cr
2

: ð27Þ

For a rectifying section it follows from (26) that:

gr
j ¼ gj

Cj � Cj�1

Cj�1 � Cj�2
; gj�1 ¼ gr

j
Cj � Cj�2

Cj � Cj�1
� gr

jþ1: ð28Þ

Boundary conditions for j ¼ n are Cn ¼ Cf ; gn ¼ gf ¼ cg0; g
r
nþ1 ¼ 0,

thus we obtain



Fig. 4. Structure of a multistage mechanical separation system. The depleted stream after each stage enters the recycle, and the feed stream g0 with molar fraction of the
target component C0 is fed not to the initial, but to an intermediate stage of the cascade.
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gr
n ¼ gf

Cf � Cn�1

Cn�1 � Cn�2
; gn�1 ¼ gf

Cf � Cn�2

Cn�1 � Cn�2
: ð29Þ

The separation factor is used as an indicator of the separation ability
of the stage and is equal to the ratio of the enrichment factors at the
outlet and at the inlet of the stage aj ¼ xj

xj�1
. It is considered the same

for each stage, and under this condition, the system configuration is
being calculated.

The mole fraction unambiguously depends on the degree of
enrichment:

C xj
� � ¼ xj

1þ xj
; . . . ;C amxj

� � ¼ amxj
1þ amxj

; . . . ð30Þ

Distribution of membrane surface or number of single
devices between individual stages

Since the fluxes and compositions of the separation products
change from stage to stage, the size of the stages must also change.
The number of single units (e.g. distillation trays, centrifuges,
membranes) connected in parallel is typically changed at each sep-
aration stage.

Let us express the entropy generation rjat each stage in terms
of flows, component mole fractions and mass transfer coefficients.
In this case, we will assume that for the target component at each
stage, the mass transfer coefficient is

k1j ¼ FjK1; k2j ¼ FjK2;

where K1;K2are specific mass transfer coefficients for each compo-
nent, and Fjis the membrane area or the number of standard single
pieces of equipment (e.g. centrifuges) at the j-th stage. We will call
this value ‘‘the size of a stage”. Then, for a flux proportional to the
difference in chemical potentials, as shown above, the entropy gen-
eration can be expressed through the fluxes as:

rj ¼
g2
j

Fj

C2
j

K1
þ 1� Cj
� �2

K2

" #
: ð31Þ

To shorten the notation, we introduce Mj as the ‘‘square of the
reduced flux”:

Mj ¼ g2
j

C2
j

K1
þ 1� Cj
� �2

K2

" #
ð32Þ

and solve the problem of such a distribution of the total surface or
the total number of unit devices F between the steps as specified by

r ¼
X
j

rj ¼
X
j

Mj

Fj
! min =

X
j

Fj ¼ F: ð33Þ

The Lagrange function for this problem is

L ¼
X
j

Mj

Fj
þ kFj

� �
:
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Its stationarity conditions are:

F�
j ¼ F

ffiffiffiffiffiffi
Mj

p
Xn
m¼1

ffiffiffiffiffiffiffi
Mm

p ;
F�
j

F�
j�1

¼
ffiffiffiffiffiffiffiffiffiffi
Mj

Mj�1

s
j ¼ 1; . . . ;n: ð34Þ

After substituting the conditions (34) into the expression for the
production of entropy (33) we get:

r� ¼ 1
F

X
j

ffiffiffiffiffiffi
Mj

q !2

: ð35Þ

Thus, since the separation enrichment factor is taken to be constant
for all stages, it is necessary to express the costs and mole fractions
included in the expression for Mjthrough the given mole fraction of
the output streams and the value of the feed stream and substitute
those into the formula (35).

3.1. Calculation formulas for fixed separation factor

In this case, the number of steps to the feed point and the total
number of steps are:

m ¼ ln x0 C0ð Þ � ln xout Coutð Þ
lna

� 1; n

¼ ln xf Cf

� �� ln xout Coutð Þ
lna

� 1: ð36Þ

To calculate the fluxes at each stage, the mole fractions are substi-
tuted into the formulas (27), (26), (28)

Cj ¼ C ajþ1xout
� �

; Cr
j ¼ C aj�1xout

� �
; Cj�1 ¼ Cr

jþ1 ¼ C ajxout
� �

: ð37Þ

When j ¼ m we have C amþ1xout
� � ¼ C0, and when j ¼ n we have

C anþ1xout
� � ¼ Cf .
Example 1. Let us assume

C0 ¼ 0:007; Cout ¼ 0:001; Cf ¼ 0:04;

a ¼ 1:09; g0 ¼ 1:0mol=s; T ¼ 323K:

The specificmass transfer coefficients are K1 ¼ 1:05;K2 ¼ 0:95. Their

dimensions are mol2K
J�s�m2 . The totalmass transfer surface is F ¼ 100m2.

Using formulas (36), (37), (5) we get, rounding to the next large
integer:

m ¼ 22;n ¼ 43; c ¼ 0:154:

The enrichment factor, mole fraction, and flux at the outlet of the
first stage according to the formulas (26), (28) are equal to

xout ¼ 0:001001; Cr
2 ¼ C xoutað Þ ¼ 0:001089;

C1 ¼ C xouta2� � ¼ 0:001188;
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g1 ¼ 0:846
C xoutað Þ � Cout

C xouta2ð Þ � C xoutað Þ ¼ 0:776mol=s:

Using (32), we find the ‘‘square of the reduced flow” which, through
(34) determines the size distribution between the stages:

M1 ¼ 0:7762 0:0011882

1:05
þ 1� 0:001188ð Þ2

0:95

 !
¼ 0:632:

The optimal numerical results for all stages are shown in Table 1.
The optimal distribution of contact areas is shown in Fig. 5. The
total entropy generation is from (35)

r� ¼ 341:91W=K:

The reversible work of separation per mole of a mixture can be cal-
culated by formula (4):

DA0 ¼ 8:31 � 323 � 0:154 � 0:04 � ln 0:04ð Þ þ 0:154 � 1� 0:04ð Þð
� ln 1� 0:04ð Þ þ þ 1� 0:154ð Þ � 0:001 � ln 0:001ð Þ þ 1� 0:154ð Þ
� 1� 0:001ð Þ � ln 1� 0:001ð Þ � �0:007 � ln 0:007ð Þ � 1� 0:007ð Þ
� ln 1� 0:007ð Þ ¼ 24:64 J=mol;

whence reversible power:
Table 1
The optimal separation solution for Example 1 with n ¼ 43 stages total, m ¼ 22 stages in th
the stage number; xj the mole fraction of light component leaving that stage; Cj the mole
immediate optimization variable ‘‘square of the reduced flow”; F�

j the size of the j-th stag

j xj Cj

1 0.001189 0.001188
2 0.001296 0.001295
3 0.001413 0.001411
4 0.001540 0.001538
5 0.001679 0.001676
6 0.001830 0.001827
7 0.001995 0.001991
8 0.002174 0.002169
9 0.002370 0.002364
10 0.002583 0.002576
11 0.002815 0.002808
12 0.003069 0.003059
13 0.003345 0.003334
14 0.003646 0.003633
15 0.003974 0.003959
16 0.004332 0.004313
17 0.004722 0.004700
18 0.005147 0.005120
19 0.005610 0.005579
20 0.006115 0.006078
21 0.006665 0.006621
22 0.007265 0.007213
23 0.007919 0.007857
24 0.008632 0.008558
25 0.009409 0.009321
26 0.010255 0.010151
27 0.011178 0.011055
28 0.012184 0.012038
29 0.013281 0.013107
30 0.014476 0.014270
31 0.015779 0.015534
32 0.017199 0.016908
33 0.018747 0.018402
34 0.020434 0.020025
35 0.022273 0.021788
36 0.024278 0.023703
37 0.026463 0.025781
38 0.028845 0.028036
39 0.031441 0.030482
40 0.034271 0.033135
41 0.037355 0.036010
42 0.040717 0.039124
43 0.044381 0.042495
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p0 ¼ DA0g ¼ 24:64W:

The irreversible energy consumption is from (9)

Tr� ¼ 323 � 341:91 ¼ 110:435kW:

This is 4480 times greater than the reversible power requirement,
which is confirmed by the practice of separation of diluted mixtures
(Fig. 1, Benedict and Pigford, 1981).
4. Selection of the separation sequence for multicomponent
mixtures

It is assumed above that the mixture being separated is binary
and the separation occurs into streams, each of which contains two
components. In the case when the mixture is multicomponent and
it is required to separate it into several streams, the problem arises
of choosing the optimal sequence of separation. In this case, the
separation of multicomponent mixtures is realized as sequential
separation of mixtures into two streams. So, with complete separa-
tion, a mixture of three components is first separated into two
streams, one of which contains two components. Then this stream
is again separated at the second stage. Both the mass transfer coef-
e stripping section, i.e. the feed point, and a ¼ 1:09 the separation factor per stage. j is
fraction of light component entering the stage; gj the flux leaving the stage; Mj is the
e.

gj Mj F�j

0.78 0.63 0.43
1.49 2.33 0.83
2.14 4.83 1.19
2.74 7.92 1.52
3.29 11.42 1.83
3.80 15.19 2.11
4.26 19.13 2.37
4.69 23.14 2.60
5.08 27.16 2.82
5.44 31.14 3.02
5.77 35.03 3.20
6.07 38.80 3.37
6.35 42.44 3.52
6.61 45.93 3.67
6.84 49.26 3.80
7.06 52.42 3.92
7.26 55.42 4.03
7.44 58.26 4.13
7.61 60.93 4.22
7.76 63.45 4.31
7.91 65.81 4.39
8.04 68.04 4.46
7.83 64.57 4.35
7.05 52.37 3.91
6.34 42.30 3.52
5.68 34.01 3.15
5.08 27.19 2.82
4.53 21.60 2.51
4.02 17.04 2.23
3.56 13.33 1.97
3.13 10.32 1.74
2.74 7.89 1.52
2.38 5.95 1.32
2.05 4.41 1.14
1.74 3.20 0.97
1.46 2.25 0.81
1.21 1.53 0.67
0.97 0.99 0.54
0.75 0.60 0.42
0.55 0.32 0.31
0.37 0.14 0.20
0.20 0.04 0.11
0.15 0.02 0.09



Fig. 5. Optimal distribution of sizes Fj of the stages j in Example 1. As always the largest requirement is at the feed point (22).
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ficients and the flow rates of the output streams at each stage
depend on the choice of the separation point.

The problem of choosing the separation sequence is solved
below under the assumption of complete separation, i.e. when
each of the output streams contains only one component. In this
case, a stage can be understood as a complex of separating devices
with an equivalent coefficient of mass transfer.

As already mentioned, for mechanical systems, reversible work
(corresponding to the productivity p0) does not depend on the
order in which the separation is organized, since p0is determined
only by the fluxes and compositions of the input streams and the
output of the system as a whole. However the irreversible compo-
nent of the power Dpin (27) depends on in which sequence, the
components are selected and allows one to select this sequence.

A mixture of three components. Consider a mixture of three
components with mole fractions C0 ¼ C01;C02;C03ð Þand the flux
g0, which can be set to unity. In this case, the fluxes can be
expressed through their mole fraction in the mixture to be sepa-
rated. The components are ordered according to the property used
for separation (density, membrane permeability coefficient, etc.).
Thus e.g. thinking in terms of distillation, component 1 is the most
volatile, component 3 the least volatile.

The mass transfer coefficients depend on the choice of the sep-
aration point. For the case when the first component is initially
separated from the mixture (‘‘direct order of separation”), we
denote the mass transfer coefficient by a1, and for the split
between the second and third components, by a2. Let us find the
irreversible energy consumption for the two options:

a. Direct (first separate the first component, then separate the
second and third);
b. Reverse (first separate the third component, then the first and
second).
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Trying to separate off the middle component first is not an
option because the components are numbered according to their
property used for the separation, e.g. volatility in the case of distil-
lation. Then one always needs to separate from the extreme prop-
erties first, either the lightest or the heaviest.

For simplicity, the separation at each stage will be assumed
complete. The irreversible power costs for each order of division
in accordance with (27) are:

Option a)

Dpa ¼ Dpa1 þ Dpa2 ¼ C2
01=a1 þ C02 þ C03ð Þ2

a1
þ C2

02=a2 þ C2
03=a2

� �
: ð38Þ

The first two terms in this sum represent losses from irreversibility
at the first stage of separation. With g0 ¼ 1and complete separation,
the costs g1and g2at the exit of this stage are equal to C01and
C02 þ C03ð Þrespectively. A mixture of second and third components
are considered as one substance with a flux at the outlet
C02 þ C03 ¼ 1� C01.

In option b), in a completely similar way, we obtain

Dpb ¼ Dpb1 þ Dpb2 ¼ C2
03=a2 þ C02 þ C01ð Þ2

a2
þ C2

02=a1 þ C2
01=a1

� �
: ð39Þ

If the difference between these irreversible costs is negative, then
the direct splitting order is preferable. This condition

Dpab ¼ Dpa � Dpb < 0 ð40Þ
after simple calculations leads to the inequality

a1C01 C01 þ 2C02ð Þ > a2C03 C03 þ 2C02ð Þ: ð41Þ
If the inequality (41) is opposite, then as the first stage of separation
it is preferable to choose the reverse splitting order, separating the
third component first.



I. Sukin, A. Tsirlin and B. Andresen Chemical Engineering Science 248 (2022) 117250
Example 2. Let the composition of the feed three-component
mixture be C01 ¼ 0:6;C02 ¼ 0:3, C03 ¼ 1� C01 � C02 ¼ 0:1 and the

mass transfer coefficients: a1 ¼ 0:1mol2

Js , a2 ¼ 0:2mol2

Js . It is easy to

see that the inequality (41) is true (0.072 > 0.032), which means
that one first needs to separate off the first component and then
split the second and third components.

Multicomponent mixtures. When separating mixtures, con-
sisting of more than three numbers of components, the rule (41)
allows one to compare any two possible choices of the separation
point, combining several components into one equivalent selection
(fraction).

Let the total mole fraction of components with indices from 1 to
ibe x1 ið Þ, and the mass transfer coefficient corresponding to the i-th
separation boundary is ai. The mass transfer coefficient corre-
sponding to the j-th boundary is aj. Finally, the total mole fraction
of components from jþ 1to nis equal to x3 jð Þ; j > i. Note that x1de-
pends on the choice of the upper bound, and x3depends on the
choice of the lower one. Finally, x2 ijð Þis the mole fraction of the
fraction consisting of components located between the i-th and j-
th separation boundaries.

At the first stage, it is expedient to choose the i-th separation
point if for all values of j > ian inequality similar to (41) holds:

aix1 ið Þ x1 ið Þ þ 2x2 ijð Þ½ � > ajx3 jð Þ x3 jð Þ þ 2x2 ijð Þ½ �: ð42Þ
Let us call the expression

Fij ¼ aix1 ið Þ x1 ið Þ þ 2x2 ijð Þð Þ
ajx3 jð Þ x3 jð Þ þ 2x2 ijð Þð Þ
	 


the efficiency coefficient corresponding to the i-th separation
boundary.

At each stage, the choice of the separation boundary corresponds to
the maximum in iof the minimum in j > i of the efficiency coefficient.

5. Conclusion

The boundaries of the reachable sets for mechanical separation
systems are obtained and it is revealed how the kinetics of mass
transfer processes affects their shape. The distribution of contact
surfaces, fluxes of direct flow, and recycle for multistage systems,
which satisfies the conditions of minimum dissipation, is obtained
under the assumption that the enrichment factor is constant in the
stripping and rectifying sections. It is shown that taking into
account irreversibility makes it possible to formulate and solve
the problem of the order of separation of multicomponent mix-
tures according to the condition of the minimum irreversible
power consumption.
9
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