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Are We Measuring the Right Things 1

for Climate? 2

Christopher Essex and Bjarne Andresen 3
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Abstract If one could exist on climate scales would it make any more sense to 4

measure laboratory-scale quantities to capture climate conditions than it does for 5

us on the laboratory scale to compute wave functions to understand the weather? 6

Clearly the quantum mechanical and the laboratory regime are constructed in terms 7

of different physical variables. Why do we presume, then, that laboratory regime 8

quantities like temperature continue to be the appropriate physical variables to 9

measure in a climate regime? This paper suggests why we may not be measuring the 10

right things and it will broach some alternatives in the context of a reformulation for 11

relevant physics more natural to long timescales: slow time. Specifically it shows 12

that fluctuating velocities can be “thermalized” in suitable averages suggesting that 13

one might imagine climate in terms of a generalization of wind which may include 14

persistent meteorological winds, or none at all. But it also shows that temperature 15

cannot be “thermalized” on long time and space scales, making the notion of local 16

equilibrium and simple generalizations of temperature problematic for climate. 17

1 Introduction 18

We measure thermodynamic quantities like temperature, pressure, and humidity 19

for weather—all strictly local and transient properties of a physical system out of 20

global thermodynamic equilibrium. Should we measure the same things for climate? 21

It is taken for granted that these things continue to have meaning for climate. 22

Moreover, the physical climate system is often viewed, to the contrary, as a stable 23

thermodynamic system, only changeable through external influences, even though 24

there is no physical reason to view it in that way. But perhaps there is something
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Fig. 1 Two images of the same Niagara Falls downstream flow. The left image is an exposure of
0.4 s, while the right-hand image is exposed for 50 s. Note the flow features visible in the right-
hand image (streamlines, bow waves, standing waves, vortices, etc.) that are not clearly visible or
invisible in the left image

thermodynamic-like on large enough space and timescales. If climate can actually 26

prove to have such a property, it must emerge from an unstable dynamical system 27

where any direct thermodynamical connections are strictly local. Showing such a 28

thing exists, if it even does, is a most challenging scientific problem. 29

In terms of thermodynamical quantities, there are few good analogs on the 30

gravity-irrelevant, jiggling, and sticky kinetic-atomic scales, despite some interest- 31

ing efforts to find thermodynamic-like analogues for those microscopic scales. Such 32

conventional quantities remain tied to the laboratory regime. But studying climate 33

is not unlike atomic physics upside down, where we are the atoms. While it is 34

easy to mistake the appearance of, say, snow or palm trees for climate, these are 35

only indirect manifestations of a grander physics. Trying to imagine that physics 36

from a laboratory-scale perspective is like viruses trying to theorize about what the 37

laboratory they are in looks like. This paper suggests that we may not be measuring 38

the right things for climate, and it will broach some alternatives in the context of a 39

reformulation for relevant physics more natural to long timescales: slow time. 40

To fix ideas, consider the images of Fig. 1. The left-hand image of Fig. 1 shows 41

the turbulent water of the Niagara River downstream from Niagara Falls as the 42

human eye sees it. The water flow is complex and turbulent as it self-interacts, 43

and interacts with the shore and river bottom, not to mention surface interactions 44

with the air. In contrast the right-hand image of the same scene shows phenomena 45

previously only visible to the most educated eye, if visible at all. Streamlines, bow 46

and standing waves, or downstream vortices are all plain in the right-hand image, 47

which is a 50 s time exposure. 48

On the 50-s timescale physical phenomena reveal themselves that are invisible to 49

the unaided eye. The reverse is also true. Things are visible to the eye that do not 50

show up on the 50-s timescale. There is an old trick of architectural photographers 51

that eliminates all traffic from an image by the use of long lenses, slow film, and 52

time exposures. Some of what is visible to the human eye is thus made to disappear 53

in the resulting images, not unlike the case of some turbulent water in the Niagara 54

River images. 55
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We have a sense of the appearance and disappearance of different physical 56

phenomena between different physical regimes through the relationship between 57

physics on the atomic and laboratory scales. But in that we also understand the 58

physics of the laboratory scales stands independent of that of the atomic scales 59

too, even though they are physically consistent and compatible (Essex 2011). 60

We can in that sense “ignore” the atomic regime in studying laboratory-scale 61

physics. That is we can make predictions of laboratory-scale phenomena in terms 62

of laboratory-scale variables only, without explicitly referring directly to specific 63

kinetic-scale variables. 64

Can we do this with the 50-s timescale fluid flow from Fig. 1? This is far from 65

clear. Just because we see structure does not mean that there is a stand-alone physics, 66

let alone dynamics for that regime. To see if there is dynamics one could generate 67

a sequence of 50-s time exposures and then run the result as a video. Perhaps the 68

streamlines and standing waves, etc., change and move in the resulting slow-time 69

video, perhaps they do not. But if there is a dynamics of the 50-s regime that 70

stands independent of the laboratory regime, one needs to be able to forecast what 71

happens on the 50-s timescale video without requiring data from the laboratory 72

regime. The resulting theory and its associated variables must be able to ignore 73

the laboratory regime. 74

The closure problem of fluid mechanics is the famous failure to achieve 75

independence for the physics of turbulent flows from the laboratory regime. Of 76

course the theory, as realized in the Navier–Stokes differential equation, can be 77

integrated to generate integrated variables, which (it was hoped) would stand as 78

the measurables of a putative theory for turbulent flow, independent of the usual 79

laboratory regime. But it failed. 80

Thus to this day not only can we not always accurately predict the flow in a pipe 81

from first principles but we cannot accurately predict the lowest order statistic either 82

from first principles. It failed because the integration of the equation creates more 83

independent integrals over combinations of variables than original variables in the 84

parent regime. Thus not all values are determined by the integrated equation within 85

the integrated regime. It is always necessary to refer to the parent regime to evaluate 86

them, and thus the integrated equation cannot forecast anything, except in (at best) 87

an empirical manner. The integrated variables are not part of a stand-alone theory, 88

but are subordinate to the laboratory regime. They do not represent the measurables 89

of a stand-alone theory for turbulent flow. 90

The 50-s regime defined through Fig. 1 does not imply that there is anything 91

special in comparison to, say, a 200-s regime, or a 4-h regime for that matter. All 92

the issues of structure appearing and disappearing can still be in play between them, 93

but none need to represent a regime with a stand-alone physical theory independent 94

of the laboratory regime. The climate problem is simply a version of this problem, 95

but on a much grander scale. But while there is no established on-going discussion 96

of the 50-s regime, there is one for climate. While there are no putative variables for 97

a putative 50-s theory being regularly measured, putative variables for climate have 98

boldly been advanced without proof of their merit. 99

We do not yet know whether climate is simply a phenomenon subordinate to the 100

meteorological regime (which only differs slightly from the laboratory regime as the 101
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parent regime for climate conceptualization), or a physically distinct regime with its 102

own governing equations in terms of variables assembled in an as yet unknown 103

manner from meteorological or kinetic primaries. If the answer to the existence 104

question is yes, it is an open question as to whether what we measure or assemble 105

from meteorological measurements today in the name of studying climate actually 106

represents true climate measurables emerging from a stand-alone theory for climate. 107

While we cannot answer this question definitively we can use thinking from the 108

beginnings of slow-time theory to look at aspects of this issue, assuming such a 109

stand-alone climate regime exists. We can say that certain variables are not likely 110

to help us with insight into a stand-alone theory for climate. In particular with 111

previous work on the “slow-time Maxwellian” (Essex and Andresen 2015) we will 112

show that local equilibrium will not likely survive in a climate regime, which makes 113

any suppositions about an analog to meteorological local equilibrium problematic, 114

suggesting that climatological measurables will not be simple averages over local 115

thermodynamic states. 116

First we will address this by discussing how one might envision the thermal- 117

ization of wind. We will find that the kinetic energy of wind is easily thermalized 118

under particular conditions, making wind something that fits naturally into a climate 119

picture where systematic winds survive averaging and random fluctuations can be 120

envisioned as contributing to a long timescale version of temperature. Second we 121

show that unlike wind, fluctuations in temperature cannot be thermalized, because 122

they typically produce a distribution that does not have a Maxwellian shape. 123

This suggests that local thermodynamic states normal for meteorology cannot 124

exist for a putative climate regime, and raises the question as to whether averages 125

over local temperature will provide insight into climate. 126

2 No Wind 127

Let’s start with a simple example and consider the effect of fluctuations in rest 128

velocity, u, of a small volume of gas, i.e., wind. Without loss of generality we 129

proceed in terms of fluctuations in one space dimension. Then the molecular velocity 130

profile is the Maxwellian, 131

p.vI u;T/ D
� m

2kT

�1=2 1
p
�

e�
m
2kT .v�u/2 : (1)

Imagine that on a large timescale, e.g., the timescale of climate, winds experience 132

reversals and ranges of magnitudes so that we may plausibly assume a normally 133

distributed rest velocity u about u D 0 with �u being its standard deviation. If 134

over the long timescale there is a prevalent velocity u0, it is easy to translate this 135

distribution to be around that u0. Assuming that the central limit theorem holds, this 136

convolution of the v and u distributions is itself a Gaussian, 137

p.vI �/ D
� m

2k�

�1=2 1
p
�

e�
m
2k� v

2

(2)
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but now with a revised effective temperature, � , 138

� D
�2u m

k
C T (3)

that contains the fluctuations of wind u. Suppose �u � 5m=s, then for air at 139

T D 300K, �2u m=k � 0:1K. This change of temperature of 0:1K is for most 140

practical purposes negligible. However, for other flows than the material wind, e.g., 141

radiation, the ensuing revised effective temperature may be markedly changed. In 142

any event, what is wind on the laboratory (meteorological) scale is still wind on the 143

long timescale. But it has changed what is perceived as temperature. 144

The new temperature here, � is an emergent feature of a well-defined underlying 145

(small-scale) mechanism, not just a generalization. It is in all respects a legitimate 146

temperature. As long as u is fluctuating in a Gaussian manner, all of the ideal gas 147

relationships re-emerge, but in the temperature � instead of T . For example, energy 148

E along one axis is simply, E D Nk�=2, just as it is in T for the laboratory regime. 149

Coarsening the timescale for fluctuations in u amounts to thermalizing the wind. 150

3 No Local Temperature 151

Next we turn to fluctuations in, temperature, over our long timescale as a more 152

relevant quantity for climate predictions. Like before for u, we will assume 153

that fluctuations in T , or some function of T , are normally distributed. This is 154

speculation, but the aim is only to find a plausible slow-time scenario. Meanwhile 155

we will not be working with T but � defined in Eq. (3), where wind, u, has 156

been thermalized. Actually, for mathematical convenience we will be working in 157

the precision of a distribution rather than its standard deviation. The precision is 158

1/(standard deviation). For a Maxwellian velocity distribution like Eq. (1) we have 159

that the standard deviation �u /
p

T while the precision  /
p
ˇ where ˇ D 160

1=kT . However, we will still refer to fluctuations in the precision as “temperature 161

fluctuations.” Thus larger precision means a tighter distribution. 162

Now the Gaussian precision,  , is defined by 163

� m

2k�

�1=2 1
p
�

e�
m
2k� v

2

D
 
p
�

e� 
2v2 ; (4)

where  D 1=.
p
2�� / D

p
m=.2k�/ D

p
mˇ�=2 and has units of 1/velocity for 164

the Maxwellian. 165

Let us now suppose that this precision itself is not constant but is normally 166

distributed in a variable � about some reference value  0 such that  D  0 C � . 167

Then Eq. (4) becomes 168

 
p
�

e� 
2v2 D

 0 C �
p
�

e�. 0C�/
2v2 � pv� : (5)
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Fig. 2 The velocity distribution p.vIw;  0/ of Eq. (7) for w D 2:5 and center precision  0 D 1

(red). A pure Gaussian thermal distribution is shown in green for comparison. The left frame is
a normal linear plot, the right frame a semilog plot where the agreement between the slow-time
distribution (red) and a thermal distribution (green) for small velocities but large discrepancy at
large velocities is even more evident

Since  D
p

m=2k� > 0 for finite � , � 2 .� 0;1/ so that the normal distribution 169

ought to be truncated. However, in typical statistical applications infinite domains 170

are commonly used instead of semi-infinite ones. For example, the convention of 171

spectroscopy is to integrate over spectral lines for frequencies, � 2 .�1;1/, even 172

though negative frequency makes little physical sense. In this case the inadmissible 173

values contribute little to relevant integrals as well (Essex and Andresen 2015). 174

Taking this position we allow � 2 .�1;1/ instead. The corresponding 175

probability distribution function in � is 176

p� D
w
p
�

e�w2�2 ; (6)

where w is the Gaussian precision for this � distribution with units of velocity. We 177

will see that the resulting structure is such that w appears naturally in the expressions 178

as a velocity, aiding interpretation of molecular velocity v regimes: 179

p.vIw;  0/ D
Z 1
�1

pv�p�d� D
w3 0

p
�.v2 C w2/3=2

exp

�
�

w2 2
0 v

2

v2 C w2

�
: (7)

This equation is the temperature counterpart of Eq. (2) for the wind average. 180

Two distinctive features emerge: This probability distribution function has 181

polynomial (heavy) tails and a Gaussian core. The shift between these is controlled 182

by the remarkable argument of the exponential, �w2 2
0 v

2=.v2 C w2/. Notice that 183

Eq. (7) is almost symmetrical in v and w. For small velocities, when v � w, it 184

becomes the classical Gaussian form exp .� 2
0v

2/ since the denominator in the 185

pre-factor, .v2 C w2/3=2, behaves like a constant. For large velocities, v � w the 186

argument of the exponential approaches a constant leaving an asymptotic behavior 187

of � v�3. Figure 2 illustrates this mixed behavior. 188
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Thus near the center of the probability distribution function it behaves like 189

a Maxwellian with temperature � while far from the core the simple notion of 190

temperature is not sustainable. This Maxwellian is invalid for jvj > jwj, thus � 191

has no usable role in the sense of thermodynamics in that moments of the integral 192

will not produce the traditional simple functions in terms of � . 193

This is quite different from the result of letting the velocity u fluctuate, where 194

the result was another Gaussian probability distribution function, but with a revised 195

temperature, � . The u fluctuations were naturally incorporated into the microscopic 196

ones. This does not happen with the fluctuations in � since the microscopic quantity 197

temperature or precision also appears in the normalization factor multiplying the 198

exponential in Eq. (1). Thus knowledge of short time quantities is needed for 199

calculation of the longtime average of temperature. In other words, temperature 200

cannot be part of a self-contained set of variables at long times. 201

4 Other Winds 202

The preceding makes two key points clear: 203

1. For finite w temperature cannot be thermalized like wind. Thus local equilibrium 204

and all that it implies is tied to the laboratory regime, and not a property of large 205

space and timescales. 206

2. Properties like wind can be formally thermalized as above, and mechanical 207

pressure (distinct from thermodynamic pressure) continue to have meaning. 208

Persistent winds on long timescales can be captured in the preceding by not 209

assuming wind fluctuations are centered on zero. 210

Local equilibrium is tied entirely to the practical existence of intensive ther- 211

modynamic variables (Essex and Andresen 2013). Local conditions must then be 212

characterized in a different manner in a putative climate regime. Unlike intensities, 213

extensive thermodynamic variables can exist in such a regime. Thus we can still 214

speak, for example, of energy and numbers of molecules. We can still imagine 215

boundaries that such properties traverse, therefore fluxes still make sense. Vector 216

flux densities divided by the corresponding volume densities of any extensive 217

thermodynamic quantity of that slow regime will thus induce a local vector velocity 218

field. This provides a way to distinguish between fixed conditions and evolution. 219

When all vector velocity fields become identical, all processes stop. There is a 220

rest frame in which there are no flows. The need for local equilibrium is thus 221

circumvented. The various vector velocity fields are referred to as generalized winds 222

(Essex 2013). Furthermore, all flows are put onto a common scale: velocity. A 223

departure in velocities from each other is a measure of the vigor of processes. 224
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5 Conclusion 225

This paper has contemplated the perspective of an observer who would regard 226

the laboratory regime as jiggly and microscopic, much as we see the kinetic or 227

nanoscales. We aimed to get beyond pure speculation by focusing on how the 228

Maxwellian distribution might be seen by such a slow-time observer. The window 229

of observation for this observer would be bounded by events that are too close in 230

time to distinguish from his point of view (fast time), which would include our 231

regime. We would regard the putative observer as experiencing slow time. Hence 232

the resulting distribution is described as the slow-time Maxwellian. 233

The technique was to form compound distributions by fluctuating the wind, u, 234

and temperature, T . Temperature and velocity emerge with a conjugate quality, 235

which occurs explicitly in the case of thermalizing of wind. But it also appears in 236

a more subtle manner in the precision picture of the Gaussian distribution because 237

fluctuating precision led to a normal distribution with its own precision (i.e., the 238

precision of the precision). The latter has units of velocity, and this velocity, w, plays 239

a decisive role in the structure and behavior of the resulting compounded densities. 240

It acts like a reference velocity separating regimes. It divides Gaussian-like structure 241

from polynomial, heavy-tail structure. 242

An unusual hybrid of Gaussians with heavy tails emerges in this paper as a 243

key feature. Heavy tails clearly can be expected to be a feature of the slow-time 244

regime. This has some consequences. First, the notion of local equilibrium ceases 245

to be strictly valid. There is no straightforward temperature, as there is in the 246

Maxwellian case. There could be other qualities that might play such a role in 247

the slow-time regime, but they would not be temperature strictly speaking. If w is 248

large enough, the core would still behave Maxwellian, which would permit a limited 249

return to temperature as long as the core of the probability distribution function is 250

of importance. Second, the wings of the distribution need to be considered from a 251

physical standpoint to avoid divergent moment integrals. 252

The slow-time observer is left with a rather different behavior for the ideal gas. 253

There are heavy tails and a nearly Gaussian core, becoming more Gaussian with 254

increasing w. But as the tails are heavy, we observe divergent second moments. 255

Does this mean that energy becomes infinite? Not if there are only a finite number of 256

particles and finite energy in the underlying system to begin with. The composition 257

of probability distribution functions changes nothing in this regard. 258

The fundamental finding of this study is that while wind persists in slow time 259

(the climate perspective), temperature does not. Hence any conclusions based on an 260

extrapolation of short laboratory time measurements of temperature are ill founded: 261

We are not measuring the right things. 262
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