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Abstract

Functions, not dynamical equations, are the definitive mathematical objects
in equilibrium thermodynamics. However, more than one function is often
described as “the” equation of state for any one physical system. Usually
these so named equations only capture incomplete physical content in the
relationships between thermodynamic variables, while other equations, no
less worthy of the name equation of state, go inconsistently by other names.
While this approach to terminology can be bewildering to newcomers, it
also obscures crucial properties of thermodynamic systems generally. We
introduce specific principal equations of state and their complements for
ideal gases, photons, and neutrinos that have the complete thermodynamic
content from which all other forms can be easily deduced. In addition to
effortlessly clarifying many smaller classical issues, they also make prop-
erties like the second law of thermodynamics and local thermodynamic
equilibrium completely visual.

1 Introduction

Aside from physical notions such as heat and work, thermodynamics ap-
pears centered around differentials because of expressions such as

dU =TdS — PdV + Y udN;. (1)
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where the variables have their usual meaning of internal energy, tempera-
ture, entropy, pressure, volume, chemical potential, and particle number,
respectively. This equation of differentials, known as the Gibbs equa-
tion [7], is typically described as fundamental. However, the assump-
tion of thermodynamic equilibrium implies that a differentiable function
U = f(S,V, Ny, N,,...) exists such that

U U U
dU_ﬁdS+WdV+IZa—NidN,~ 2)

where T, P,{j;} are suitably identified as the first derivatives, dU/dS,
—aU/dV, and {dU/AN;}. Why neither this function

U= f(S,V,N1,N,,...) 3)
nor the alternative entropy representation, which represents an inverse in U,
SZQ(U,V,Nl,Nz,...) (4)

are emphasized instead of differentials is a matter of style, history, and
tradition.

The differential of a differentiable function is simply an alternative ex-
pression of the function itself, up to a constant, in its independent vari-
ables. It is easy to confuse the abstract mathematical change in the sense
of a differential with actual physical dynamics, so care must be taken not
to confuse that differential with physical dynamics in itself. In fact, strictly
speaking the equation of state makes no reference to time. It is timeless. Of
course that does not mean that time has no role in thermodynamics by any
means. But in dynamical systems language, thermodynamic equilibrium
would be realized at best as a fixed point or a singular point in a vector flow
field. Few fields represent simple functions in this way, but many encounter
functions expressed as differentials for the first and only time through the
unique customs of thermodynamics.

This picture is further obscured by the traditional offering of equations
involving partial derivatives (intensities) as “the” equations of state. The
equations

PV =kNT (5)

and ;
U = EkN T (6)
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are often referred to as equations of state, but in terms of the above desig-
nations they rather represent a system of partial differential equations when
written out in full,

oUu oUu
kN_BS + V_BV =0, (7)
oUu
3kN— —2U =0. 8
7S ®)

Solutions of these equations do not in themselves tell us about, for ex-
ample, 1. To have an explicit relation with those variables fully accessible
requires that these partial differential equations be integrated followed by
input of new information from theory or experiment to set the resulting in-
tegration constants. Partial differential equations in other partial derivatives
are sometimes given names other than “equation of state,” however, though
they are no less worthy of the name. They all stem from a common princi-
pal equation of state, Eq. (3), containing all information about the system.
These alternative partial differential equations are even depicted at times
as being entirely foreign to thermodynamics. For example, the relation for
radiation PV = U/3, or

U
3 —=V+U=0 9
Al : €))

is often described as an external result of electromagnetic theory [4] instead
of originating as it does from the same principal equation of state as does
the Stefan-Boltzmann law U = aT*V, or

aU\4
aV(aS) U =0. (10)

The principal equation of state implicitly defines, through its various par-
tial derivatives, a family of equations whose members will be referred to
here as secondary equations of state. Thus, for example, the ideal gas law
or the Stefan—-Boltzmann law are secondary equations of state, despite their
relative historical prominence. While the existence of the form of Eq. (3)
is often presumed, it is rarely explicitly presented historically. Indeed it is
given such scant attention, that it is not even clear whether the straightfor-
ward cases have all been published or even computed. But there is valid
insight to be gained from looking at these functions directly, which imply
limitations for all equations of state.

Accordingly this paper shows:
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1. The principal equation of state in the case of several physical systems
(i.e., ideal gases, Van der Waals gases, photons, neutrinos) not only pro-
duces all the better known secondary equations of state, but it also shows
other well-known relationships to be secondary equations of state, too.

2. The principal equation of state’s convexity makes the second law of ther-
modynamics inherent to the equation of state, making it visually appar-
ent, and putting a general constraint on physically consistent empirical
equations of state.

3. The principal equation of state implies a complementary principal equa-
tion expressed in intensive variables only, which makes the distinction
between local thermodynamic equilibrium and full equilibrium visually
apparent.

4. The complementary principal equation clarifies why no one intensity
can represent a system in local thermodynamic equilibrium.

2 The principal equation of state and its complement

In this paper we consider systems with a common equilibrium manifold ex-
clusively. We do not treat physical mixtures or frozen states. In principle all
values of (U, S, V, N1, N,, ...) exist mathematically, but only those which
satisfy Eq. (3) are equilibrium states. Furthermore off of the manifold,
though mathematically well defined, points do not necessarily represent
physical thermodynamic states or even represent them uniquely. They may
also represent transients or a projection from a higher dimensional space
with variables not visible in this space. However well-defined mathematical
points of the space (U, S, V, Ny, N,,...) are, they do not imply a unique
physical state except on the equilibrium manifold. Some people extend
the set of extensive variables with internal variables to fully specify non-
equilibrium states. We refrain from this since we are not interested in the
non-equilibrium states per se but only in the equilibrium manifold. We use
the well-defined mathematical structure of the full (U, S, V, Ny, N,,...)
space, without the need to ascribe any particular physical meaning to points
off of the equilibrium manifold, other than of course how they frame the
mathematical structure of the equilibrium manifold itself.

The essential property of extensive thermodynamic variables is additiv-
ity, which implies that the principal equation of state function must be first
degree homogeneous:

AU = Af(S,V,Ni,Na,...) = fF(AS, AV, AN, ANs,...),  (11)
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from which we observe by differentiation with respect to A then setting
A=1,

oU oU oU
U=-—-S+-—V+)Y N, (12)
i
On substitution of T, P, {i;},

U=TS—PV+) wh. (13)

It is customary to use the Legendre transformation G = U — TS + PV
to arrive at the Gibbs free energy G = ), u; N;. Yet we have used little
more than the Euler property of homogeneous functions [1]. But Eq. (13)
untransformed is at least as physically compelling. It leads to a comple-
mentary pair of differentials, the Gibbs equation (1) and the Gibbs—Duhem
equation [5]:

dU =TdS — PdV + Y udN;. (14)

0=S8dT —VdP + ) Nidp,. (15)

1

which in turn imply Eq. (3), of course, and a second complementary equa-
tion:

0=g(T, P, ty, s,...). (16)

Note that Eq. (16) has a dimension one less than Eq. (3): The property of
system scale is missing because all variables are intensive.

The principal equation of state (3) with additivity formally implies the
existence of a manifold in the space formed from extensities only. That
manifold is a (perhaps piecewise) smooth subset of that space defined by
the function. The term “manifold” provides a single convenient word to
describe curves, surfaces, and their extensions into higher dimensions. The
two equations (3) and (16) form a complementary pair. They will be re-
ferred to respectively as the principal equation of state and the comple-
mentary principal equation of state. One equation represents a manifold
in extensity space, while its complement is a manifold in intensity space.
The two equations are equivalent and contain the same information ex-
cept for a lack of scale in Eq. (16). This feature is used in a subsequent
section to frame understanding of local thermodynamic equilibrium for a
non-equilibrium system.
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3 Convexity and the second law

Any thermodynamic state on the equilibrium manifold can be defined by
a position vector, r = (U, S,V, N1, N,,...) in extensity space, where
r € R""! Here n is the number of independent variables of the exten-
sity space, i.e., the number of arguments for f. Of course points off of
the manifold can be similarly located, but only position vectors that fall
on the manifold defined by Eq. (3) constitute unconstrained equilibrium
states. Locations off that surface can be reached mathematically by using
the additivity of mutually independent equilibrium systems, although those
points do not generally correspond to physically realizable states. Thus an
equilibrium state of a homogeneous system is fully represented by a po-
sition vector r rooted in the origin and ending on the surface. By virtue
of the scaling property Eq. (11), Ar is just a scaled version of the same
thermodynamic state. Thus changes of state along radial lines from the ori-
gin are degenerate in that no internal thermodynamic process is required
to move between them. They only correspond to different amounts of the
same equilibrium system. This is a global requirement on all thermody-
namic systems. This scaling is illustrated in Figure 1, where the shaded
bandshell-like surface is the equilibrium surface within the 3-dimensional
space of {S,U, V}. The green rays emanating from the origin represent
equivalent equilibrium states, differing only in magnitude, e.g., states r;
and 2r;.

On the other hand, joining two independent systems denoted by their
state vectors r; and r, that do not follow on the same radial line is a differ-
ent matter. Pure additivity would yield a state ry 4 r,. That is, the resulting
entropy would be given (incorrectly) by

S(ry) + S(rz) = S(r; +1r3) (17)

based on pure extensivity, if state functions did not have to reflect the sec-
ond law. But the second law of thermodynamics requires that not all exten-
sities can be additive after an irreversible interaction between systems de-
fined by r; and r;. In particular, if U, V, N1, N,, ... remain additive (i.e.,
their total amounts remain fixed before and after the systems are joined),
then the total entropy must increase,

S(ry) + 8S(r2) < S(ry +r2). (18)

At this point it is important to remember that the space depicted in Fig-
ure 1 represents possible extensities of a system, equilibrium as well as
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Figure 1. Equilibrium surface S(U, V') (shaded bandshell-like surface) in the
space of extensive variables {S, U, V'}. The green rays emanating from the
origin represent equivalent equilibrium states, differing only in magnitude,
e.g., states r; and 2 r;. The vector ¢ (thick blue line) is a chord connecting the
two equilibrium points 2 ry and 2 r, on the equilibrium surface but otherwise
being under the surface and thus passing through non-equilibrium states. The
equilibrated mixture of ry and r; is indicated as S(r; + r») and the entropy
produced in the equilibration is shown as the short thick red line.

non-equilibrium. This is a challenging idea unless it is appreciated that all
extensities, unlike intensities, have a well-defined existence out of equilib-
rium. Energy, number, volume, and even entropy, unlike intensities, do not
derive their existence from thermodynamic equilibrium. We may imagine
a system with any combination of these. As mentioned above, these values
may be transient, only realized at some instant, or they may be constrained
over all time. A point in extensity space provides no means to distinguish

between such systems and does not represent a specific thermodynamic
i J ‘ s c 1.d
ad Date | Al
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state even if it is a well-defined point. Only those points that are on the
manifold will be in a unique thermodynamic equilibrium, fully defined by
the variables of the space, requiring no constraints or alternative presump-
tions to remain where they are in the state space indefinitely.

In contrast, intensities have no meaning for points off the manifold be-
cause intensities are slopes on a particular manifold in extensity space.
Only points on that manifold represent equilibrium states. Any other points
represent out of equilibrium conditions which do not capture particular dy-
namical properties. But external considerations generally imply an unspec-
ified relaxation to some point on the equilibrium surface through some un-
specified particular non-equilibrium processes when unconstrained.

While most of the present paper is cast in the energy picture, U =
f(S,V,Ny, N,,...), this irreversibility effect is most conveniently illus-
trated in the entropy picture, S = q(U,V, N1, N,,...), as in Figure 1.
However, they are equivalent.

The vectors 2r; and 2, are position vectors on the equilibrium surface
because of scaling. Then the vector ¢ = 2r, — 2r; joining 2r; to 2r;
(marked in blue in Figure 1) must also touch the surface at 2r; and 2r,,
and S(2r;) and S(2r,) must also be equilibrium entropies. Further, the
state r; + r, bisects c.

Using scaling, inequality (18) can be expressed in terms of the average
of these equilibrium entropies:

S2ry) +S2ry)
2

S(ry) + S(r2) = < S(r; +r2). (19)

The vector ¢ and the unit vector along the S-axis § together define a
plane. This is the vertical plane in Figure 1 which is drawn semitransparent
in order to allow view of the origin, the original equilibrium states r; and
r,, and the full green scaling rays. In that plane ¢ defines a chord to the
curve created by the intersection of the plane with the equilibrium surface.
In that plane we may assign a parameter ¢ to denote the position r along
the vector linearly, such that r(z;) = 2r; and r(f;) = 2r,. We may then
re-express Eq. (19) in terms of the position parameter ¢,

(20)

S(t1) + S(t2) - S(fl + 12)’

2 - 2
where we recall that r; + r, produces a point that bisects the chord in the
plane induced by ¢ and S. Thus that point on the chord occurs at a value of
t that is the average of the end values. The irreversibility indicated by this
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inequality, i.e. the difference between the equilibrated entropy S(r; + r»)
and the unequilibrated, merely scaled entropy S(r;) + S(r»), is shown by
the thick red line in Figure 1.

As the states represented by #; and #, are arbitrary, Eq. (20) reduces to
the standard definition of a convex function, S(z) in the plane defined by
¢ and §. Note that while the practical distinction between concavity and
convexity is important in fields such as optics, mathematically speaking
convexity implies concavity viewed from the opposite direction. Thus both
properties are conventionally characterized under the general heading of
“convexity,” which is the convention used here. Furthermore, as long as
r; and r, are not parallel, this reasoning is true for any such plane, thus
requiring the surface itself be convex.

The second law of thermodynamics consequently necessitates the con-
vexity of the principal equation of state function in the entropy picture,
Eq. (4) and equivalently the convexity of the principal equation of state
function in the energy picture, Eq. (3). Thus the second law of thermo-
dynamics shows up in the convexity of the equilibrium surface. Not only
is this conceptually important, the principal equation of state guarantees
agreement with the second law for all processes.

A corollary of the second law arising from convexity is that pure addi-
tivity of constrained equilibria cannot take one “above” the entropy equi-
librium surface. Pure additivity leads to a position on a chord joining the
end points 2r; and 2r, which always lies “below” the equilibrium surface
because of convexity. Thus values of S greater than the value on the sur-
face, for given values of U, V, Ny, N,, ..., are not achievable in this way.
Extensity space is divided into two physically different parts, the “upper”
part of which can only be reached through irreversible processes. In the en-
ergy picture, U = f(S,V, N1, N,,...), which is convex, “above” should
be replaced by “below,” etc.

We now return to the energy picture and observe that the eigenvalues
of the Hessian are the practical indicator for convexity. At some r we

may define a parameter ¢ along a direction represented by the vector h =
<]’l1,]’l2, ey ]’ln) Then

dU 1d%U
Vo) =UO) + -] _ 1+ 5757,

0z2 + 0(t?). (21)

The second term is the derivative along h with respect to 7, while the third is
the second directional derivative. Along h we have the following equation.
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n n n
1
Ur +th) =Ux) + Y U, (1)t + 3 DO Unny (®)hihjt* + O(1).
i=1 j=1i=1
(22)
Here we have used the notation U, = dU/dx. The double sum is the
second directional derivative which can be rewritten as

n

YD Unn, (0)hihy = W H () h, (23)

j=1i=1

where # is the matrix of second derivatives, U;;, known as the Hessian.
As the right side is a quadratic form in h, the sign of the second derivative
or curvature for any direction h is determined by the eigenvalues of . In
particular, convexity guarantees for the case of the energy representation,
Eq. (3), that the eigenvalues will all be positive except when h is a direction
that implies a position vector r on the equilibrium surface. In that case the
eigenvalue must be 0 because scaling requires that the surface be flat in
that direction. Therefore all Hessians of principal equations of state will
certainly have one zero eigenvalue, and it follows that their determinants
will always vanish. Moreover because they are symmetric, all eigenvectors
other than r will be orthogonal to the position vector r.

We conclude this section by observing that the second law manifests
itself visually in graphs of the principal equation of state by the curvature of
the surface. Furthermore, empirically developed equations of state, which
are common in some areas of chemistry and engineering, must conform to
this property.

4 Local equilibrium and the complementary function

The complementary function g(7, P, t1, (42, ... ) arising from Eq. (16) has
a different character which illustrates the notion and extent of local equi-
librium. While the extensity space containing U = f(S,V, Ny, Na,...)
has physical meaning for energies “above” the equilibrium manifold be-
cause such points are physically accessible in principle by the additiv-
ity of independent subsystems in terms of additive extensities, this is not
so off the manifold in intensity space. Unlike the analogous case of ex-
tensity space, no strict definition exists for intensities off the equilibrium
manifold. Thus relaxation of the definitions of intensities would be re-
quired to discuss points off the manifold there. However, one can imag-
ine approximate temperatures and chemical potentials that need not satisfy



The principal equations of state 303

0 = g(T, P, 1, 1o, ...) exactly but approximately. This permits real-
istic discussion of approximate equilibrium scenarios that may only hold
locally in configuration space (i.e., local equilibrium), which are of great
importance because real world measurements normally take place in local
equilibrium environments.

In this scenario there is no scale to the equilibrium, so that the scale
property has no importance, given that the system has no formal “extent.”
But unlike extensity space, physical systems are just represented by single
points in intensity space, irrespective of what their scale in configuration
space may be. Thus an equilibrium-like point in configuration space makes
as much sense in intensity space as an extended system does. But classical
local equilibrium is more than just a limiting case of equilibrium at any
point in configuration space, which holds uniformly, of course, at all points
within an extended equilibrium system. Local equilibrium, unlike proper
equilibrium, permits the equilibria of points in configuration space to vary
continuously. Thus a local equilibrium system is not strictly speaking in
proper thermodynamic equilibrium, but the extent that its points in con-
figuration can be represented by (approximate) local intensities that satisfy
0=g(T, P, 1, 2, ...) gives meaning to the concept.

Essentially we imagine splitting the full system into a number of smaller
systems, each one in equilibrium but out of equilibrium with its neighbors.
We then imagine taking a limit to zero volume for the small systems. Air
temperature for example not only makes empirical sense, but one argues
theoretically that the probability density function of molecules in the air is
nearly locally mixed, and Gaussian or Maxwellian. This is a reasonable
approximation as long as distances £ in configuration space are small com-
pared to the gradients in local thermodynamic intensities, J;, divided into
the local measured intensity:

;i
S a4 /dx

Since intensity space ignores scale, every point in this space corresponds to
aray in extensity space, on the equilibrium manifold to the extent that local
equilibrium actually has meaning. Only in global equilibrium will all of
these local thermodynamic states agree and have the same intensities. That
is, in global equilibrium there will be unique values for 7, P, i1, a2, .. .,
corresponding to a single point on the intensity manifold, for all points on
a scaling ray in extensity space.

But local equilibrium, satisfying 0 = g(T, P, 1, 2, ...), will be rep-
resentable in intensity space, too. Unlike global equilibrium, it will not

14 (24)
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appear as a point, but as a finite domain on the equilibrium manifold, with
a nonzero and definable set diameter. The extent to which the local equi-
librium achieves global equilibrium is the degree to which this domain ap-
proximates a single point on the manifold. Thus, if the domain is small by
some suitable measure compared to other differences in question, it may
be regarded as in global equilibrium for practical purposes. But if ques-
tions posed concern changes within the domain, then a global equilibrium
approximation makes no sense.

S Principal equations of state and thermodynamic
geometry

Manifold convexity makes a reliable structure on which to characterize dis-
tance. In 1975 Weinhold suggested using the Hessian of Eq. (22) as a
metric in an abstract thermodynamic space [10]. Subsequently, thermody-
namic lengths were calculated using this and the closely related entropy
metric and it was found [9] that these lengths can bound the dissipation in
a process generally. Specifically,

AA > —, (25)
T
where A A is the availability (exergy) lost in the process, L is the thermo-
dynamic length of the process path,

dUu
dX %6
/1;rocess path \/ dX dX X, (26)

6 is the relaxation time of the system, and t is the duration of the process.
Here X 1is the vector of all the independent extensive variables,
{S,V, Ny, N,, ...} inthis case. This is clearly a tighter bound than the tra-
ditional statement AA > 0 since the right-hand side of Eq. (25) is strictly
positive for any non-equilibrium process.

Since Eq. (26) uses the Hessian of the energy (or alternatively the en-
tropy) function, we need the complete principal equation of state for the
system in order to proceed. Thus a large part of the considerations pre-
sented in this paper were necessitated by these dissipation calculations and
optimizations of paths, not least the principal equation for the ideal gas
presented in the next section. A recent review of such thermodynamic ge-
ometric optimizations may be found in Ref. [2].
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6 Examples of principal equations of state

6.1 Photons and neutrinos

We will begin the examples with the case of photons and neutrinos. Al-
though the principal equation for these does not seem to have been pre-
sented or studied previously, and they are perhaps the least familiar parti-
cles for thermodynamic study, they are certainly the simplest structurally.
We will subsequently deal with cases of increasing structural complexity.
Following Ref. [6], the energy of unpolarized particles in the phase space
volume d3p d3r is
d3p d3r
h3
where 7 is the mean occupation number for either photons or neutrinos, €
is the energy per particle, and % is Planck’s constant. The entropy of that
same volume is

dU = 2ne 27

d3p d3r

h3
where k is Boltzmann’s constant. The upper signs correspond to neutrinos

(bosons) and the lower to photons (fermions). The energy density U/ V,
from direct integration [6],is  Error:  bosons and fermions Interchanged

dS = 2k[:F(1 Fn)In(l Fn) —nlnn] (28)

V 4

where o is the Stefan—Boltzmann constant and c is the speed of light. Sim-
ilarly for the entropy density S/ V,

U _ 15:F1<g)T4’ (29)

Cc

S 415F1
S _tbF (3)T3. (30)
Vv 3 4 ¢
By eliminating 7" and solving for U we find the explicit principal equation
of state, 1 1
81 \3 3
o= (o) ()’
1024 oV
for photons while for neutrinos we find
81 1 1
U= (—)3 (i)3s%. (32)
896 oV
Some notable partial derivatives are worth noting. For example,
U
—=u=0 (33)
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for both photons and neutrinos, easily demonstrating a fact often merely as-
serted to students. This lack of N -dependence of U is a direct consequence
of Eqgs. (27) and (28). More fundamentally it arises from the fact that the
photon number is not conserved. Note that no number of any kind appears
in the final principal equation of state. When considering this, care must be
taken not to confuse an ensemble mean occupation number, n, for which
there is no conserved quantum number, with a specific conserved number,
N, which typically is associated with some fundamental conserved number
like charge, or baryon number, etc. Thus the number of variables shrinks
to 2, S and V, and the state space of Figure 1 becomes 2-dimensional.
Moreover, the Hessian becomes 2 x 2 and there are thus only 2 eigenval-
ues, one of which is 0.
U 1U
— —_—p=__
v 3V
is a relationship typically deduced in texts on electromagnetic theory (e.g.
Ref. [4]), but it arises here directly from the principal equation of state. It
represents simply another secondary equation of state. Equation (34) leads
to the complementary principal equations of state by substituting for U,

(34)

0=(I5F 1)(%)T4— 12P. (35)

The Hessian for photons is

wo— ()} R B e R

P (1440) —V-iSs V-iSs

c | v2 Vs
—(—c : 36
(1440521/7) |:—VS SZ} (56)

It has eigenvalues 0 as do all systems (see discussion following Eq. (23))
and

1
¢ 30¢2 2
(144(752 V7) 5%+ V5, ©7)

which is strictly positive. The zero eigenvalue corresponds to the eigen-

vector
S
gl

as expected. In that direction there is no curvature in the manifold because
it is the direction in which the extensities scale. All other directions will
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have positive directional derivatives. Since eigenvectors of symmetric ma-
trices are orthogonal, the second eigenvector must be

—V
[ ¢ } (39)

Note that in Eq. (37) mixed unit objects emerge. This is a consequence
of the path in extensity space, which is a mixture of changes in coordinates
of unlike units. Either an explicit or an implicit relationship between S and
V' adopted will set its direction. This tells us that the actual magnitude of
Eq. (37) will be unit dependent and not physically important on its own.
However, most importantly, the sign is not dependent on these things.

The Hessian for neutrinos is very similar,

c \ilv-is—3 —p-igs
Hn :( ) _4 o1 _7 o4
126 o —V—383 V7383

c il v —vs
= (— 40
(1260S2V7> |:—VS 52}’ (40)

and its eigenvalues are again 0 and the positive quantity

1
30q2 2

(1260S2V7) (S7+V5). “h
These neutrinos have the same eigenvectors Eqs. (38) and (39) since the
eigenvalues only differ by a numerical constant.

The principal equation of state shows by inspection that both neutrino
and photon radiation functions of state agree with the second law, but also
that both have zero chemical potential.

6.2 Ideal and nearly ideal gases

For a single component ideal gas, the usual equations for U, P, and pu
(cf. Egs. (5) and (6)) lead to the following system of partial differential
equations:

kNaU + VaU =0 (42)
0S ov
3kNaU 2U =0 (43)
0S o
oU AU 1V /4amU\ 3
ot k—In|—(—=)" | = 44
N T Kas H[N(3h2N)] 0, (44)
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where m is the mass per particle. The solution is

3h2e3 ﬂ(N)% Xp(2 S +K>

v 3 kN

where K is an arbitrary integration constant independent of S, V, and N.
The scaling property tells us that K must either be a new scalable variable
in addition to S, V, and N, which it cannot be since there are no further
independent variables, or it must be zero. The principal equation of state
for an ideal gas then becomes

U= (45)

dr  m

N Y (2 )

If we solve this equation for S, to find the equivalent entropy representa-
tion, the result is known as the Sakur—Tetrode equation for the entropy of
an ideal gas,

3. /mU V 5 3 4
S = kN[21n( S ) +1n(N) +3+ 2ln(3h2)]. (47)
Thus the entropy principal equation of state is already known but not with
the designation as an equation of state. The energy expression (46) can be
found only rarely [8].

Convexity is suggested by the exponential dependence on S. The
Hessian #, is straightforward to compute as

U

2V2N2 _2kN3V 2VEN(N — S)
—2kN3V SKZN4 —kVN2(5kN —25)
QVEN(N —S) —kVN2(5kN —2S) V2(5k2N?—4kSN +252)
h? 1 V3 28 5
— (= =2 _2). 48
X exmk2 N2V3 (N) eXp(SkN 3) (48)

As expected, inspection shows that the vector

S
V (49)
N

in the direction of simple scaling of the system is an eigenvector with eigen-

value Ap = 0, ensuring the determinant of the Hessian must be 0. This
eigenvalue corresponds to motion on the equilibrium surface [3].
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Dropping the positive scalar multiplying the matrix in Eq. (48) for sim-
plicity, the remaining two eigenvalues, A+ and A_, are

Ay =a =+ B, (50)

where

5 2 2 3 5
o =[_ Nz(k _Z —) + N4 52]v2 +ONYE (D)

and

B = % {—16V*N’Sk —4k*V>N*S> —40k°V>N>S — 40 V*N’k>S
+ 36 VAN?k?S? —4k* NV —4VAN*k* + 8V*N2S?
+50k*V2N® —16 V*SkN + 25 N3k* + 4 V4s*
+25 VAN + 4VANY2, (52)

The eigenvalues of symmetric matrices are real, so the argument of the root
in Eq. (52) must be positive or zero. These two eigenvalues correspond
to two, usually different, relaxation times [3]. It is not surprising that an
ideal gas would have such two different relaxation times since it is well
known that, e.g., pressure and temperature disturbances relax at different
speeds, pressure relaxation usually being much quicker than temperature
relaxation. As noted above for photons and neutrinos, these eigenvalues
are of mixed units indicating that the corresponding eigen-directions are
not purely pressure and temperature relaxation but some mixtures.

To confirm that these complicated expressions for eigenvalues are ac-
tually positive, consider the characteristic polynomial for the matrix in
Eq. (48). Since we are given one eigenvalue (i.e., zero), we can focus on
the remaining two factors of the cubic polynomial, reducing the problem to
a quadratic:

AA=2A)A=-2)=0 = A—-A)A—-2A)=0. (53)
For nonzero physical variables this implies,
A,+ + A =2
_ o[22 2 5\? 2, 3 a2 472
=2 SN (k=3 5) + N7+ 8745 N
> 0. (54
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From Eq. (50)
ApA_=a? = B> =6V2k’N*(V*+ N>+ S?) > 0. (55)

The only way for the sum and product of real A4 and A_ to be both positive,
is for both A and A_ to be positive or zero.

Extending the results above to a multicomponent ideal gas differing by
particle numbers »N; and masses m; is not technically challenging, since
each type of gas appears as an independent statistical weight in the entropy.
Thus, the principal equation of state becomes

o= BN S Gy e

i=

A slight modification for a multicomponent ideal gas differing by num-
ber N; and m; and individual heat capacity per number C; follows from the
entropy perspective. The constants {; take internal structure into account.
Cy is the overall heat capacity per particle such that U = Cy NT':

Ni

L Oy e NE 116 S
U_TNH[(V) ] eXp(cwv)' 7

Cim;

Again from the entropy perspective, a Van der Waals gas partition func-
tion leads to

o= (N e )

where suitable empirical constants a and b were introduced.

7 Conclusions

The case of the ideal gas shows that the principal equation of state puts ther-
modynamic constraints on what is possible in terms of equations of states.
Correctly derived, its curvature ensures fulfillment of the second law. It is
emphasized that many of the so called equations of state such as “the ideal
gas law” only provide part of the picture, usually under the tacit assumption
of keeping one thing or another fixed during the process. For optimizations
via thermodynamic geometry the full equation of state, including all de-
grees of freedom, is essential. The principal equation of state also clearly
demonstrates many key principles of thermodynamics with minimal effort
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and maximum clarity. Moreover, it suggests that the better model for study-
ing this subject from a structural point of view is through radiation rather
than the ideal gas which is mathematically more challenging.

Acknowledgments. The authors thank the referees for their constructive
comments. In particular one referee helped to clarify the physical meaning
of points off the equilibrium surface.
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