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We investigate whether it is possible to operate a given binary distillation column with several
different reflux ratios (heat flow rates) while achieving the same purity and amount of distillate.
We find that even for small variations in the plate efficiency vs flow rate several distinct values
of the reflux ratio exist that achieve the same output of the column.

I. Introduction

Distillation has been a technological process of great
interest for several millennia, and much heuristic,
experimental, and theoretical knowledge about the
behavior of distillation columns has been obtained
[1-4]. Since distillation is such a common process in
science and engineering, the question of efficiency and
subsequent optimization of the distillation process has
often been raised. Recent investigations are concerned
with minimizing the entropy production in distillation
[5-7] and with the control of distillation columns [8].
The field is still very much active, and the final answer
is by no means found. Especially economic consider-
ations have driven the quest for higher efficiency and
optimal use of resources [1], and an economic optimiza-
tion is always performed before a column is actually
built and taken into operation.
However, for a given ordinary distillation column

there remains for all practical purposes only one control
parameter that can be adjusted, once the amount and
purity of the feed and distillate have been prescribed.
This quantity is the reflux ratio at the condenser. It
translates into the amount of heat flow through the
column which is proportional to the energy consumption
and entropy production during the process.
Thus it is of great interest, not only for economic

reasons but also for reasons of control, to know whether
there might be several values of the heat flow (reflux
ratio) that allow the operation of a given column while
producing a desired purity of the distillate. In this
paper we address this issue generally and show that
fairly rapid changes in the plate efficiency vs flow rate,
even of small magnitude, may result in the existence of
multiple operating modes. A related study [9] of
multiplicity in a multicomponent distillation was based
on global material balances with several solutions.
After presenting qualitative arguments for the exist-

ence of such multiple operating modes in section II, we
show their presence explicitly for the case of an ideal
binary distillation column in sections III and IV. Fi-
nally, in section V, the effect of nonidealities is dis-
cussed, and comparison is made to other efficiency
studies primarily based on entropy production.

II. Qualitative Arguments for the Existence of
Multiple Operating Modes

A distillation process using perfect plates (or, at least,
plates with constant efficiency) will, for a given num-
ber of plates Nc in the column, exhibit only one pos-
sible reflux ratio R (heat flow Q) that can produce the
desired distillate, since the number of required plates

N(R) decreases monotonically with R [3]. The distillate
flow D, the final purity xD, and the initial feed con-
centration xF are assumed to be fixed for a given
process.
As indicated in the Introduction, the cause of the

possible existence of multiple operation modes lies in
the dependence of the plate efficiency on the heat and/
or material flows. Clearly, if the plate efficiency ap-
proaches zero with increasing reflux ratio, then the
number of plates necessary to achieve a certain amount
of purified distillate will approach infinity in the limit
of zero plate efficiency. Similarly, an infinite number
of plates is necessary for reflux ratios approaching the
minimum reflux ratio [3]. There must therefore exist
a minimum in the number of required plates, Nmin, for
some reflux ratio between Rmin and infinity. If the
column is built with a number of plates Nc > Nmin, then
there are obviously two reflux ratios for which this
column will produce the same purity.
However, the second solution will in general occur at

such large values of the reflux ratio that one would
never realistically contemplate running a column in that
regime. Thus for practical purposes the question is
“Can multiple solutions associated with minima in the
curveN(R) (orN(Q)) occur in the regime of reflux ratios
that is commonly employed for the economically optimal
operation of the column?”
The answer to this question is affirmative. Any rapid

change in the plate efficiency, even of small magnitude,
can introduce a local minimum in the required number
of plates vs reflux ratio (heat flow) curve for given fixed
input and output concentrations. Since most distillation
columns are constructed of discrete plates (stages), the
number of necessary plates for the actual operation will
necessarily change in steps of unity as the reflux ratio
R is varied. Thus the actual curve Nobs(R) of necessary
plates will be an integer step function approximating
the continuous curve N(R). As a consequence many
small local minima in N(R) may not be noticeable in
Nobs(R) if they fall well within a single step of Nobs(R).
However, if the local minimum of the contiuous N(R)
curve happens to dip below an integer value, even ever
so slightly, the integer Nobs(R) curve will also display
two values of R corresponding to a particular number
of plates, separated by a (small) region with a value of
Nobs(R) one higher (cf. e.g. Figure 2 where the horizontal
dashed line would correspond to that particular number
of plates). These two reflux ratios (or the corresponding
heat flows Q1 and Q2) constitute the multiple solutions
mentioned above.
In order to go beyond these purely qualitative argu-

ments, we will in the next two sections calculate N(Q)
for an ideal distillation process with plates whose
efficiency P(Q) decreases with increasing heat flow Q.
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III. Equations Describing a Distillation Column

We are not interested in taking into account specific
details of the materials that have to be separated nor
general imperfections of distillation columns like pres-
sure drops, heat leaks, etc. beyond including these
design effects into the plate efficiency. For our purposes
any perfect ideal distillation column can be described
by demanding that mass conservation of the components
and enthalpy conservation hold at each plate. We will
consider the case of binary distillation of two ideally
mixed substances. We assume no heat of mixing or
radiation losses and a non-negligible pressure drop. In
addition, we assume that all the plates exhibit the same
plate efficiency as a function of heat flow, i.e. the small
variations in liquid/vapor flow over the length of the
column do not matter as far as the plate efficiency is
concerned (see section V for the case that the plate
efficiency depends on the material flows instead).
We count plates from the top, i.e. for the rectifying

section the condenser is plate 0 and feed is on plate nF,
while for the stripping section 0 is the feed plate and
nW corresponds to the boiler. Expressions with a caret
refer to the stripping part of the column.
The perfect (plate efficiency equals one), ideal (eq 4c

below applies) binary distillation column operation can
be described by the following transfer equations [3]
(see Figure 1 for the traditional definition of the
variables):

Vn and Ln describe the vapor and liquid flows leaving
plate n, yn is the fraction of component one in the vapor
leaving plate n, while xn is the fraction of component
one in the liquid that leaves plate n. H1 and H2 are the
heats of vaporization of components one and two, while
CV and CL are the specific heats of the vapor and liquid
phase, respectively. The expression describing the
contribution of the specific heats to the total enthalpy
of the substances is, of course, rather simplified. The
justification is that we are only interested in that part
which changes noticeably over the temperature range
we consider. Consequently, we have dropped several
terms in the usual expression which are essentially
constant.
The vapor-liquid equilibrium on the plates follow

Equations 4a-c describe the equilibrium curves of the
phase separation diagram of the ideal mixture made up
of substances one and two. R is the relative volatility
constant, and we choose component one to be purified,
i.e. R > 1. Note that only two of the three equations
(4a-c) are independent.

Figure 1. Sketch of the heat (left half) and mass flows (right half) in a distillation column. Two generic plates in the rectification and
stripping section are shown explicitly (n and n̂), together with the plates where distillate, waste, and feed are extracted and added. Qvapor

≡ heat flow carried by vapor, Qliquid ≡ heat flow carried by liquid, V ≡ mass flow carried by vapor, and L ≡ mass flow carried by liquid.
Quantities with/without a caret correspond to the stripping/rectification part of the column, respectively.

Vn + Ln ) Vn+1 + Ln-1 (overall mass conservation)
(1)

ynVn + xnLn ) yn+1Vn+1 + xn-1Ln-1

(component one mass conservation) (2)

Qn
vapor + Qn

liquid ) Qn+1
vapor + Qn-1

liquid S Vn[yn(H1 +
CV1Tn) + (1 - yn)(H2 + CV2Tn)] + Ln[xnCL1Tn +
(1 - xn)CL2Tn] ) Vn+1[yn+1(H1 + CV1Tn+1) +

(1 - yn+1)(H2 + CV2Tn+1)] + Ln-1[xn-1CL1Tn-1 +
(1 - xn-1)CL2Tn-1] (enthalpy conservation) (3)

Tn ) Teq(yn) (4a)

Tn ) Teq(xn) (4b)

yn
eq(xn) )

Rxn
1 + (R - 1)xn

(vapor curve) (4c)
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Finally, the boundary conditions at the condenser,
feed-plate, and boiler tie the variables to the exterior
reservoirs and fix the overall heat flows:

The concentrations of component one in the distillate
and the waste are given by xD and xW, respectively,
while xF and yF refer to the concentrations in the liquid
and vapor at the feed plate, respectively. D, W, and F
are the distillate, waste, and feed (typically boiling
liquid) flows, respectively. Finally, Q denotes the en-
thalpy flows carried by the various parts of the system;
Qin is the heat added at the boiler, while Qout is the heat
extracted at the condenser.
We can now integrate eqs 1-3 and get The constants

Q and Q̂ are conserved quantities of the system, since

they represent the heat flows entered into the system
at the boiler and the feed, and they can be uniquely
related to the reflux ratio Rn ) Ln/D at any given plate.
However, this reflux ratio is not constant along the

column if the two components carry different enthalpies
and the heat capacities are nonzero. In the following
we will therefore use instead the constant heat flow Q
or rather the heat load per unit of product, q ) Q/D,
where D, the distillate production rate, is fixed for a
given process instead of the reflux ratio R, since the
reflux ratio is not constant along the column for ε and
CV,L * 0. Here we have replaced H1 and H2 by their
difference ε ≡ H1 - H2 and H ≡ H2. The case of ε and
CV,L ) 0 corresponds to constant material (liquid/vapor)
flows, which implies, of course, that R is also constant.
Globally, mass and enthalpy conservation are reflected
in the following relations:

From now on we will set the specific heats CV and CL
equal to zero. This approximation is usually quite
justified for ε * 0, since then the major portion of both
the enthalpy flow and the enthalpy exchange at each
plate is due to the heat of vaporization. (See section V
for a discussion of the problems that may occur when
the approximation CV,L ) 0 is no longer a priori
acceptable.) As a consequence the temperature enters
the system of difference equations only via the vapor
equilibrium equations (4a and 4b). Therefore, Tn can
be deduced separately after yn and xn have been
determined. Thus we need not specify any details of
the separation process beyond the assumption of ideal
mixtures that is implied by eq 4c.
The plate efficiency is introduced according to the

definition [1]

Pn )
yn - yn+1

yeq(xn) - yn+1

(10)

For a column with perfect plates Pn ) 1, and eq 10
reduces to yn ) yeq(xn), i.e. the vapor leaving plate n is
in equilibrium with the liquid leaving plate n. Com-
bining this expression with eqs 4-7, we find the
following difference equation that describes the change
in concentration of component one from plate n + 1 to
plate n in the rectifying section of the column:

yn - yn+1 ) Pn[y
eq(xn) - yn+1] ) Pn[y

eq(xn(yn+1,Vn+1(yn+1))) - yn+1] ) Pnf(yn+1) (11)

where

f(yn+1) ) (yn - yn+1)perfect )
R[Qyn+1 - xDD(εyn+1 + H)]

[Q - D(εyn+1 + H)] + (R - 1)[Qyn+1 - xDD(εyn+1 + H)]
- yn+1 (12)

A similar expression is found for the stripping section. Making the reasonable assumption that all plates have the
same plate efficiency as a function of heat flow, we get

yn - yn+1 ) P(Q)( R[Qyn+1 - xDD(εyn+1 + H)]

[Q - D(εyn+1 + H)] + (R - 1)[Qyn+1 - xDD(εyn+1 + H)]
- yn+1) (13)

In order to proceed beyond this result we now recast eq 13 in continuous form, approximating yn - yn+1 by
-dy/dn to find

- dy
dn

) P(Q)( R[Qy - xDD(εy + H)]

[Q - D(εy + H)] + (R - 1)[Qy - xDD(εy + H)]
- y) ) P(Q) f(Q,y) (14)

x0 ) y1 ) xD, V1 ) L0 + D (4d)

x̂0 ) xnF ) xF, ŷ0 ) ynF ) yF ()y
eq(xF)),

VnF
+ L̂0 ) LnF-1 + F + V̂1 (4e)

xnW ) xW, ynW ) yW ()yeq(xW)), V̂nW
) L̂nW-1 - W

(4f)

Qout + Qdistillate + Q0
liquid ) Q1

vapor (4g)

Qfeed + QnF-1
liquid + Q̂1

vapor ) Q̂0
liquid + QnF

vapor (4h)

Qin + Q̂nW-1
liquid ) Qwaste + Q̂nW

vapor (4i)

Vn+1 ) Ln + D, V̂n+1 ) L̂n - W (5)

yn+1Vn+1 ) xnLn + xDD,
yn+1V̂n+1 ) xnL̂n - xWW (6)

Vn+1[yn+1(H1 + CV1Tn+1) + (1 - yn+1)(H2 +
CV2Tn+1)] - Ln[xnCL1Tn + (1 - xn)CL2Tn] )

Q ()constant) (7)

V̂n+1[yn+1(H1 + CV1Tn+1) + (1 - yn+1)(H2 +
CV2Tn+1)] - L̂n[xnCL1Tn + (1 - xn)CL2Tn] )

Q̂ ()constant) (8)

F ) D + W, xFF ) xDD + xWW,
Qin + Qfeed ) Qout + Qdistillate + Qwaste (9)
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To illustrate the qualitative validity of eq 14 in view
of these approximations, we have studied the distillation
profile y(n). We find that y(n) decreases monotonically
with n and that for most values of heat flow y(n) exhibits
an inflection point between the feed and the condenser
(see Appendix for details). This is in agreement with
the distillation profile of many typical distillation
processes [3].
Encouraged by this fact we now proceed with the

evaluation of N(q), the number of required plates
between the feed and the condenser. It is of course
sufficient for our purposes to continue to deal only with
the rectifying part of the column. We can integrate eq
14 for fixed heat flow q and fixed system/process
parameters R, H, ε, xD, xF (or yF ) yeq(xF)), and D. The
exact result is

with w ) (q2a3 + qa4 + a5)1/2. Here a1 through a12 are
constants:

The plate efficiency P(q) thus only enters in an
average way by increasingN*(q), the minimum number
of plates for perfect trays (P ) 1), proportionally. As
expected, N*(q) decreases monotonically with q, with
the limiting values

where

is the minimum heat flow (qmin > q0 ≡ εxD + H). We
introduced the expression Rmin

nF in order to make con-
tact with the standard definition of minimum reflux
ratio which applies for the case ε ) 0. In general

the minimum reflux ratio Rmin is found by taking the
maximum along the entire column of all the “local
minimum reflux ratios” up to plate n [1],

For ε ) 0 this maximum occurs at nF. In this case the
reflux ratio is constant throughout the rectifying part
of the column, and

In general qmin can be uniquely related to the reflux
ratio at any specified plate, e.g. the condenser, via eqs
4-7. An expression similar to eq 15 is found for the
required number of plates in the stripping section.

IV. Multiple Modes of Operation for a Given
Column

As noted in section III, if P(q) f 0 for q f ∞, then
N(q) ) N*(q)/P(q) will exhibit a global minimum in the
interval (qmin, ∞). Therefore, the existence of multiple
solutions is guaranteed if one considers the whole range
of heat flows.
However, even in the realistic operating region, where

both heat flow and required number of plates are small,
a rapid change of plate efficiency, even if of small
magnitude, will produce a local minimum in N(q) along
with multiple solutions of the equation N(q) ) Nc.
A possible cause for such a change could be the

entrainment of liquid droplets in the vapor [1]. We
expect that this phenomenon would become important
only above some critical value of the vapor flow. At the
onset of entrainment the plate efficiency should decrease
rather rapidly and then continue to decline at a slower
rate until additional effects (e.g. excessive frothing)
strongly reduce the plate efficiency, ultimately close to
zero. However, we are only concerned with modeling
the behavior of a column which is operated in the region
where entrainment first sets in and where the plate
efficiency shows a limited drop while remaining nearly
constant before and after the change. Such a limited
decrease in plate efficiency can conveniently be modeled
by assuming that 1/P(q) has the following form in that
particular region of heat flow values:

with constants f1, f2, and r.
In order to show that eq 21 can result in multiple

solutions, we consider a numerical example of the
separation of a mixture of 60 wt % benzene and 40 wt
% toluene into 97 wt % benzene at the condenser with
a distillate flow of D ) 100 mol/s. The appropriate
constants are [1]

resulting in a minimum heat flow of qmin ) 18.20 kcal/
mol ) 76.08 kJ/mol. We will assume that the plate
efficiency changes from 1.0 to 0.91 over a roughly 5%
interval around a heat flow value of qdrop ) 19 kcal/mol
) 79.42 kJ/mol as illustrated on the right hand scale of
Figure 2. The corresponding number of required plates

N(q) ) -∫yFxD dy
P(q) f(y,q)

) -1
P(q)∫yFxD dy

f(y,q)

) 1
P(q)

(N*(q)) ) 1
2P(q)[qa1 + a2

w
×

ln(qa6 + a7 + a8w
qa6 + a7 - a8w) - ln( qa9 + a10

qa11 + a12)] (15)

a1 ) R + 1, a2 ) -{H[1 + (R - 1)xD] + RεxD},
a3 ) (R - 1)2, a4 ) 2(R - 1){H[1 - (R - 1)xD] -

RεxD}, a5 ) {H[1 + (R - 1)xD] + RεxD}2,
a6 ) (R - 1)(xD + yF - 2xDyF),

a7 ) [H(xD + yF) + 2εxDyF][1 + (R - 1)xD] -
RxD[2H + ε(xD + yF)], a8 ) (xD - yF),

a9 ) xD(1 - xD), a10 ) -(H + εxD)xD(1 - xD),
a11 ) yF(1 - yF), a12 ) -qminyF(1 - yF) )

-(H + εyF)
[RxD(1 - yF) - yF(1 - xD)]

R - 1
(16)

lim
qf∞

N*(q) ) R
R - 1

ln(1 - yF
1 - xD) + 1

R - 1
ln(xDyF)

lim
qfqmin

N*(q) ) ∞ (17)

qmin ) (H + εyF)
[RxD(1 - yF) - yF(1 - xD)]

yF(1 - yF)(R - 1)

) (H + εyF)
xD - xF
yF - xF

) (H + εyF)(Rmin
nF + 1)

(18)

Rmin
n )

xD - yn
yn - xn

(19)

qmin ) (Rmin
nF + 1)H (20)

1
P(q)

) f1 + f2 tanh((q - qdrop)r) (21)

R ) 2.4, yF ) yeq(xF) ) 0.65, xD ) 0.974,
H ) 7.24 kcal/mol ) 30.26 kJ/mol, ε ) 0 (22)
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N(q) is shown on the left hand scale of Figure 2. If the
rectifying section of the column contains 11 plates (Nc
) 11), then there are three values for the heat flow, q(1)
) 18.81 kcal/mol ) 78.63 kJ/mol, q(2) ) 19.02 kcal/mol
) 79.5 kJ/mol, and q(3) ) 19.19 kcal/mol ) 80.21 kJ/
mol, that allow this operation of the column.
Clearly, one can achieve similar results by letting a

larger change in plate efficiency, e.g. about 40% (f1 ) 1,
f2 ) 0.7), occur over a larger interval of heat flow values
(r ) 1 mol/kcal ) 0.239 mol/kJ, qdrop ) 20 kcal/mol )
83.6 kJ/mol). Then, for example, a column with 12
plates (Nc ) 12) will show three operating modes, q(1)
) 18.67 kcal/mol ) 78.04 kJ/mol, q(2) ) 20.00 kcal/mol
) 83.6 kJ/mol, and q(3) ) 23.59 kcal/mol ) 98.61 kJ/
mol, farther separated from one another, as shown in
Figure 3.

V. Discussion

In the preceding section we have calculated the
number of plates required for a specific distillation
process as a function of heat flow, N(q). It was shown
explicitly that several values of heat flow q can exist
which produce the same output of a given distillation

column with a fixed number of plates Nc. Of course,
we must always address the question whether the model
we have used in the calculation is sufficiently refined,
i.e. could it happen that additional imperfections of the
column and/or nonidealities of the mixture might in-
validate our conclusions?
Let us consider the most important sources of poten-

tial problems:
(a) The plate efficiency decreases only very slowly for

heat flows in the typical region of operation. Clearly,
if in the region of interest P(q) decreases so slowly with
q that the relative decrease of the number of plates is
always outpacing the relative drop in the efficiency,
(dN*/dq)/N* < (dP/dq)/P, then N(q) ) N*/P decreases
monotonically, and no local minimum exists. If this is
the case, multiple modes are not expected.
(b) The mixture is nonideal, the heat of mixing is non-

negligible, or the specific heats contribute significantly
to the enthalpy flow. If one of these problems occurs,
the system of difference equations is more difficult to
solve since Tn can no longer be ignored. Nevertheless,
the heat flow is still a conserved quantity, and as long
as the column can be operated at all, we can still
introduce the plate efficiency independently of the plate
number,

i.e. we can, in principle, solve the system of equations
for perfect plates first and afterward introduce the plate
efficiency. Consequently, N(q) ) N*(q)/P(q), as before.
If N*(q) already exhibits local minima, then, of course,
multiple solutions are possible. If N*(q) decreases
monotonically, as in the simpler case, then the argu-
ments of section II show that multiple solutions are
possible for sufficiently rapidly changing P(q).
(c) Imperfections of the column, e.g. heat leaks or

pressure drops. If these imperfections can be incorpo-
rated into the plate efficiency, they obviously pose no
problem since they do not change the general structure
of the problem.
Of more interest is the fact that heat leaks can change

the enthalpy flow along the column. This would result
in a variation of the plate efficiency P(q) throughout the
column. A similar variation of the plate efficiency can
also occur; it is not a simple function of heat flow but
instead of the material (liquid/vapor) flow, Pn ) P(Vn).
We recall that the liquid and vapor flows vary even for
an otherwise perfect column and are only constant if ε
) 0 and CV,L ) 0, unless the effects of ε, CV,L * 0
counteract each other to a certain degree justifying the
approximation Vn ) constant. Therefore, the plate
efficiencies will be different in different regions of the
column, such that generally regions with large flows
have a lower efficiency than those with smaller flows.
The situation is turned around, if the minimum heat
flow of the column is very small, because then an
increase of q can actually improve the efficiency, since
the stronger material flows will lead to mild frothing
and thus increase the interaction between vapor and
liquid. In either case, the last equality in eq 23 or eq
14 will no longer be true.
However, the formulaN(q) ) N*(q)/P(q) will still hold

in an average sense, i.e. by replacing P(q) by Paverage(q).
This is appropriate since the average plate efficiency of
all the plates taken together will still decrease upon an
increase of heat flow as long as the efficiency of the

Figure 2. Number of rectification plates N(q) (along left vertical
axis) required to achieve a given separation as a function of q,
the applied heat flow per mass [kcal/mol]. The initial mixture of
60 wt % benzene and 40 wt % toluene is purified to 97 wt %
benzene at the condenser with a distillate flow of 100 mol/s. The
plate efficiency eff(q) (right vertical axis) is assumed to change
from 1.0 to 0.91 over a roughly 5% interval at a heat flow value of
qdrop ) 19 kcal/mol ) 79.42 kJ/mol.

Figure 3. Number of rectification plates N(q) (along left vertical
axis) required to achieve a given separation as a function of q,
the applied heat flow per mass [kcal/mol]. The initial mixture of
60 wt % benzene and 40 wt % toluene is purified to 97 wt %
benzene at the condenser with a distillate flow of 100 mol/s. The
plate efficiency eff(q) (right vertical axis) is assumed to change
about 40% over a larger interval around a heat flow value of qdrop
) 19 kcal/mol ) 79.42 kJ/mol.

yn - yn+1 ) Pn[y
eq(Tn(yn+1),xn(yn+1)) - yn+1] )

P(q) f(yn+1) (23)
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individual plates decreases. If we assume that the
plates are physically identical, then the variation of the
heat/material flow along the column will result in a
series of small drops in the average plate efficiency
rather than one major change as the heat flow increases.
Thus the change in the average plate efficiency will be
spread out over a somewhat larger range of heat flow
values compared to the change of an individual plate.
Nevertheless, this effect is not very large, since, for

example, the variation of vapor flow throughout the
column typically is only a few percent of the total flow.
In order to estimate this variation, we note from eqs
5-7 and the fact that usually ε , H that

Therefore the relative change of Vn between feed and
condenser is found to be small as long as ε , H:

Thus the general picture as described in section II still
applies if we reinterpret P(q) as the average plate
efficiency during the process: A rapid change in the
average plate efficiency causes an increase in the
number of required plates, thus leading to the possibility
of multiple operating modes.
Clearly, there are other imperfections and nonideali-

ties we have not considered. Nevertheless, our results
indicate that the existence of multiple operating modes
for distillation columns should be quite common if the
column is operated in a region of heat flows where the
plate efficiency decreases rather rapidly.
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Appendix

Equation 14 is a differential equation that approxi-
mates the difference equation, eq 13. We will here
justify that eq 14 generates solutions y(n) which cor-
respond to observed distillation profiles.
First we determine that -dy/dn > 0, i.e. the purity of

component one increases toward the condenser as
desired. We can write eq 14 as

with

We find that b > 0 since

and

This follows from eqs 5-7 and the fact that R > 1, H >
0, and ε > -H for any ideal binary mixture. Similarly,
since

R )
yeq(x)(1 - x)

x[1 - yeq(x)]
(A4)

and

we find that

Thus -dy/dn > 0, i.e. the purity of component one
increases toward the condenser. We note that the value
of heat flow that ensures that V > D is given by Q )
q0D ) D(εxD + H).
Next we determine the conditions under which y(n)

has an inflection point between the feed point and the
condenser. This is a common feature of distillation
processes and is indicative of the stability of the process
with respect to perturbations in, for example, the heat

Vn+1 ) Q
H + εyn+1

≈ Q
H[1 - ε

H
yn+1 + O(( εH)

2)] (24)

VnF
- V1

V1
)
(1 - ε

H
yF) - (1 - ε

H
xD)

1 - ε

H
xD

≈ ε

H
(xD - yF) , 1

(25)

-dy/dn ) a/b

a ≡ R[Qy - xDD(εy + H)] - yb

b ≡ Q - D(εy + H) + (R - 1)[Qy - xDD(εy + H)]
(A1)

Q - D(εy + H) ) (V - D)(εy + H) > 0 (A2)

Figure 4. Plots showing the location of inflection points in the
concentration profile of the rectification part of the column as a
function of heat flow q [kcal/mol] for given values of xD and yF.
The markers “+” and “-” refer to the two possible inflection points
y(
inf(q) of which only one (“+”) lies in the physically relevant
region. The dotted lines indicate the limiting values y(

inf(qf∞) )
(-1 (xR)/(R - 1). The cases ε> ε1 and ε< ε1 are shown separately
in Figure 4a,b, respectively.

Qy - xDD(εy + H) ) (yV - xDD)(εy + H) > 0 (A3)

yV - xDD ) xL and yeq(x) > y (A5)

a ) L(εy + H)
(yeq(x) - y)(1 - x)

1 - yeq(x)
> 0 (A6)
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flow/feed flow during the operation of the column. An
inflection point is determined by d2y/dn2 ) 0. Since
dy/dn * 0, this is equivalent to (d/dy)(dy/dn) ) 0.
Solving the resulting quadratic equation, we find two
possible inflection points:

In all cases the minimum heat flow for achieving the
desired purity is qmin > qp, q0. We note that y(

inf are
real when q > q0, but that one inflection point yinf is
always situated in the unphysical part of the plane.
Furthermore, there is a simple pole at q ) qp, which is
only of relevance if ε > ε1. The limiting values of yinf
are

lim
qfq0

y(
inf ) x1 (A8a)

with the slope equal to (∞ depending on the value of ε
relative to ε1, while

with slope equal to 0(, depending on the values of ε, R,
and xD.
In Figure 4 we plot y(

inf(q) for ε > ε1 (Figure 4a) and ε
< ε1 (Figure 4b). Note that, whereas for most choices
of parameters, we find the inflection point y+

inf in the
interval (0,xD) in the physically interesting region q >
qmin, combinations of parameters do exist where this is

not the case. In addition, for any set of parameters
there is always some interval of heat flows q for which
both inflection points lie outside the physically relevant
interval (0,xD). For reasons of space limitations we will
not discuss the dependence of this interval on the
parameters of the distillation process since it is quite
complicated.
One can treat the stripping section of the distillation

column analogously, and one finds that again two
potential inflection points exist. The curves of ŷ(

inf(q)
are qualitatively very similar to those presented in
Figure 4, but the values of q0, q1, etc. are changed, of
course.
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y(
inf )

(q1 - q) ( xRq(q - q0)

(R - 1)(q - qp)

with q0 ≡ εxD + H, q1 ≡ H[1 + (R - 1)xD],

qp ≡ ε
[1 + (R - 1)xD]

(R - 1)
(A7)

where qp {> q0 if ε > ε1
< q0 if ε < ε1

and ε1 ≡ H(R - 1)

lim
qf∞

y(inf ) -1 ( xR
R - 1

(A8b)
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