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Abstract. It is shown that for three different arrangements of heat resistances the standard
optimum performance criteria of endoreversible Carnot engines at maximum power output can be
conveniently expressed by two simple diagrams. It is also pointed out that such diagrams should
rightfully be referred to as Bejan diagrams.

1. Introduction

Bejan first proposed some simple diagrams to represent the performance of reversible and
irreversible Carnot cycles [1, 2]. Later Bucher [3] used a similar diagram to represent the heat
and work flows, the efficiency, and other performance parameters of a reversible Carnot cycle
and to assist detailed discussions. These diagrams show clearly and accurately both the first
and second laws of thermodynamics in operation, whereas more traditional diagrams depict
only the first law of thermodynamics. Thus the present diagrams are very useful in teaching
thermodynamics. As a result such diagrams have been repeatedly extended to wider classes of
problems [4–10]. In particular, Wallingford [6] shows how irreversibilities distort the diagrams
for heat engines and heat pumps. In this paper we build on these constructions and develop
two simple diagrams by which the optimum performance of Carnot heat engines at maximum
power output can be expressed directly.

2. Diagrammatic expressions

We consider an endoreversible Carnot engine with heat conductancesk1 andk2 connecting it
to its hot and cold reservoirs at temperaturesTh andTc, respectively, as illustrated in figure 1.
In order to derive the optimum performance of this engine at maximum power output we
construct the diagrams shown in figure 2 (the detailed rules are given in the appendix). It
should be emphasized that the presupposition behind the construction of figure 2 is that heat
transfer obeys a linear Newtonian law. In figure 2(b) it is further assumed that the two heat
resistances are identical,k1 = k2.
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Figure 1. Schematic diagram of an endoreversible Carnot
engine. See the text for definitions of variables.

(a) (b)

Figure 2. Diagrammatic description of the performance of endoreversible Carnot engines at
maximum power output. (a) Engine with heat resistance only to the incoming heat current or
to the outgoing heat current. (b) Engine with heat resistances to both the incoming and outgoing
heat currents. See the text and the appendix for a detailed explanation.

From figure 2 one can easily prove geometrically that

Tw = ae= ad= √ab× ac=
√
ThTc (1)

Tw1 = ar= 1
2(ab + ae) = 1

2(Th + Tw) = 1
2

(
Th +

√
ThTc

)
(2)

Tw2 = as= 1
2(ae + ac) = 1

2(Tw + Tc) = 1
2(
√
ThTc + Tc). (3)

Below it is shown how the optimum performance of an endoreversible Carnot engine at
maximum power output is directly expressed by figure 2. We will discuss the performance of
Carnot engines operating in three different situations: with heat resistance to the incoming heat
current only; with heat resistance to the outgoing heat current only; with heat resistances to
both the incoming and outgoing heat currents. The last case of course includes the two former
cases, but since they are simpler they should facilitate understanding of the more general
diagrams.

2.1. A Carnot engine with heat resistance to the incoming heat current only

Such a Carnot engine [11] is characterized by the heat conductancek1 between the heat source at
temperatureTh and the working fluid of the heat engine being finite, while the heat conductance
k2 between the working fluid and the heat sink at temperatureTc is infinite (i.e. no resistance).
Thus the irreversibility of finite-rate heat transfer only appears in the absorbing heat process,
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so the entire cycle timet is spent on the absorbing heat process, while the duration of the
heat rejection process may be neglected. The temperatureTw of the working fluid during heat
absorption is different from that of the heat source and is determined [4] by equation (1), while
the temperature of the working fluid during heat rejection is identical to that of the heat sinkTc.

The amount of heatQ absorbed from the heat source at temperatureTh and delivered to
the engine atTw and the heatQ2 rejected to the heat sink at temperatureTc by the working
fluid per cycle as well as the work outputW1 per cycle may be obtained from the geometry in
figure 2(a) and equation (1) as

Q = eh= k1(Th − Tw)t = k1
(
Th −

√
TcTh

)
t (4)

Q = eh= cm= cd + dm= Q2 +W1. (5)

If there were no heat resistance to the heat source, the work output per cycle would be
Wmax= lm. The similar triangles ‘dmh’ and ‘hea’ in figure 2(a) easily yield the efficiency of
the heat engine:

η = W1

Q
= dm

eh
= ce

ae
= 1− ac

ae
= 1− Tc

Tw
= 1−

√
Tc

Th
= ηCA (6)

and the second-law efficiency of the heat engine [5, 6, 12, 13]:

ε = W1

Wmax
= dm

lm
= eh(mh/ae)

eh(cb/ab)
= 1− ac/ae

1− ac/ab

= 1−√Tc/Th

1− Tc/Th
= 1

1 +
√
Tc/Th

= ηCA

ηc
(7)

whereηCA is the Curzon–Ahlborn efficiency of a Carnot engine at maximum power output
[14–19], andηc andWmax are the efficiency and the work output of a corresponding reversible
Carnot engine with the same heat input. Then the relations between the work outputW1, the
rejected heatQ2 per cycle, and the heatQ are

W1 = dm= eh

(
mh

ae

)
= eh

(
1− ac

ae

)
= Q

(
1−

√
Tc

Th

)
(8)

and

Q2 = cd= eh

(
1− ac

ae

)
= Q

√
Tc

Th
(9)

which can be obtained directly from figure 2(a). The resulting maximum power output, using
equations (4) and (8), is

Pmax= W1

t
= k1

(√
Th −

√
Tc
)2
. (10)

If Tc is taken to be the environmental temperature, the availability lossA1 per cycle may
also be expressed by the segment length ‘ld’ in figure 2(a). The relation betweenA1 andQ is

A1 = Wmax−W1 = ld = lm − dm= eh

(
cb

ab
− mh

ae

)

= Q
(√

Tc

Th
− Tc

Th

)
= TcQ

(
1

Tw
− 1

Th

)
= Tc1S1 (11)

making the rate of availability loss

RA1 =
A1

t
= k1

√
Tc

Th

(√
Th −

√
Tc
)2

(12)
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where1S1 = Q(1/Tw − 1/Th) is the entropy production per cycle which results from the
finite-rate heat transfer between the heat source at temperatureTh and the working fluid at
temperatureTw.

2.2. A Carnot engine with heat resistance to the outgoing heat current only

Such a Carnot engine with heat resistance to the outgoing heat current only [11] is the ‘mirror
image’ of the case treated in subsection 2.1 in that the irreversibility of finite-rate heat transfer
only appears in the heat rejection process. Thus, the temperature of the working fluid during
the heat absorption is identical with that of the heat sourceTh, while the temperatureTw of the
working fluid during heat rejection is different from that of the heat sink and is determined by
equation (1).

The amount of heatQ1 absorbed from the heat source and the heatQ rejected to the heat
sink by the working fluid per cycle and the work outputW2 per cycle, similarly to (4) and (5),
are given by

Q1 = bf = ei= eh + hi= Q +W2 (13)

Q = eh= k2(Tw − Tc)t = k2(
√
ThTc− Tc)t (14)

as illustrated in figure 2(a). The corresponding work output per cycle without any heat
resistance to the heat sink,Wmax= dg. The similar triangles ‘hif’ and ‘fba’ in figure 2(a) also
quickly yield the efficiency of this heat engine:

η = W2

Q1
= hi

bf
= if

ab
= 1− ae

ab
= 1−

√
Tc

Th
= ηCA (15)

and the second-law efficiency of the heat engine:

ε = W2

Wmax
= hi

dg
= if

gf
= ab− ae

ab− ac
= Th −

√
ThTc

Th − Tc
= ηCA

ηc
. (16)

Likewise the relations between the work outputW2, the heat inputQ1, the availability lossA2
per cycle, and finally the heat rejectedQ are

W2 = hi = eh

(
if

ae

)
= Q

(√
Th

Tc
− 1

)
(17)

Q1 = bf = eh

(
ab

ae

)
= Q

√
Th

Tc
(18)

A2 = Wmax−W2 = dm= eh

(
mh

ae

)

= Q
(

1−
√
Tc

Th

)
= TcQ

(
1

Tc
− 1

Tw

)
= Tc1S2 (19)

where1S2 = Q(1/Tc − 1/Tw) is the entropy production per cycle which results from the
finite-rate heat transfer between the working fluid at temperatureTw and the heat sink at
temperatureTc. Thus the maximum power output and the rate of availability loss may be
expressed as

Pmax= W2

t
= k2

(√
Th −

√
Tc
)2

(20)

RA2 =
A2

t
= k2

√
Tc

Th

(√
Th −

√
Tc
)2
. (21)
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It is important to note that whenk1 = k2, the two heat engines represented by figure 2(a)
not only have the same efficiency and second-law efficiency, but also the same maximum power
output and rate of availability loss, although they have different heat inputs and work outputs.

2.3. A Carnot engine with heat resistances to both the incoming and outgoing heat currents

In this engine both heat conductancesk1 andk2 between the working fluid of the heat engine
and the two heat reservoirs at temperaturesTh andTc are finite. The irreversibility of finite-rate
heat transfer appears in both heat exchange processes, and the times spent on these aret1 and
t2, respectively. The temperaturesTw1 andTw2 of the working fluid during the heat exchange
processes are different from those of the heat source and the heat sink. Please recall that
k1 = k2 = k is assumed for constructing figure 2(b). Under this assumption,Tw1 andTw2 may
be determined directly by equations (2) and (3). Thus, the heatsQ1 absorbed from the heat
source andQ2 rejected to the heat sink by the working fluid per cycle and the work outputW3
per cycle are given by

Q1 = rn = k(Th − Tw1)t1 = 1
2k
(
Th −

√
ThTc

)
t1 (22)

Q2 = sx= k(Tw2 − Tc)t2 = 1
2k
(√
ThTc− Tc

)
t2 (23)

Q1 = rn = su= sx + xu= Q2 +W3 (24)

as determined from figure 2(b). Without any heat resistances the maximum work produced
per cycle would beWmax = yv. The similar triangles ‘xun’ and ‘nra’ in figure 2(b) indicate
the efficiency of the heat engine directly:

η = W3

Q1
= xu

rn
= sr

ar
= 1− as

ar
= 1− Tw2

Tw1
= 1−

√
Tc

Th

= ηCA = 1− Q2

Q1
= 1− t2

t1

√
Tc

Th
(25)

and the second-law efficiency of the heat engine:

ε = W3

Wmax
= xu

yv
= sr/ar

cb/ab
= 1− as/ar

1− ac/ab
= 1− Tw2/Tw1

1− Tc/Th
= ηCA

ηc
. (26)

The corresponding work output is

W3 = xu= rn

(
un

ar

)
= rn

(
1− as

ar

)
= Q1

(
1− Tw2

Tw1

)

= Q1

(
1−

√
Tc

Th

)
(27)

and the availability loss is

A3 = Wmax−W3 = yz= yd + dz= yv− dv + dz

= rn

(
cb

ab
− cr

ar

)
+ sx

(
cs

as

)

= ac

[
rn

(
1

ar
− 1

ab

)]
+ sx

(
1− ac

as

)
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= TcQ1

(
1

Tw1
− 1

Th

)
+ TcQ2

(
1

Tc
− 1

Tw2

)

= Tc(1S3 +1S4) = Q1

(√
Tc

Th
− Tc

Th

)
(28)

where1S3 = Q1(1/Tw1 − 1/Th) and1S4 = Q2(1/Tc − 1/Tw2) are, respectively, the
entropy productions of the two heat transfer processes. The line segments ‘yd’ and ‘dz’
in figure 2(b) directly represent the availability losses of the two heat transfer processes. It
should be emphasized that the relationships between availability loss and entropy production
expressed by equations (11), (19), and (28) are general results of equilibrium thermodynamics
as discussed by Tolman and Fine [19] and others [20, 21].

From equation (25) one obtains an important relation for dividing the cycle duration
between the two heat transfer processes:

t1 = t2 = 1
2 t. (29)

This shows clearly that two important relations for Carnot engines at maximum power output
may be obtained directly from figure 2(b), namely the optimum ratio of the temperatures of the
working fluid in the two heat exchange processes, equations (2) and (3), and the optimum ratio
of the times spent on the two heat exchange processes, equation (29). Using equations (22)
and (27)–(29) one further obtains the maximum power output

Pmax= W3

t
= k

4

(√
Th −

√
Tc
)2

(30)

and the rate of availability loss

RA3 = A3

t
= k

4

√
Tc

Th

(√
Th −

√
Tc
)2
. (31)

3. Discussion

When the heat conductances between the working fluid of a Carnot engine and its two heat
reservoirs are different, the optimum performance of the Carnot engine at maximum power
output can also be expressed by a diagram. However, it is then necessary to introduce an
equivalent temperature [8]

Tw = Th − Q1

t

(√
k1 +
√
k2
)2

k1k2
. (32)

The efficiency at maximum power output is stillηCA, and the maximum power output is now
given [8, 22, 23] by

Pmax= k1k2(√
k1 +
√
k2
)2 (√Th −

√
Tc
)2
. (33)

It is interesting to note that the three heat engines mentioned above are the special cases of
k2→∞, k1→∞ andk1 = k2, and equations (10), (20) and (30) can respectively be derived
directly from equation (33) in these limits.

As mentioned above, the three heat engines at maximum power output have the same
efficiencyη and second-law efficiencyε. However, their work outputs and availability losses
are different because their cycle times and heat inputs per cycle are different.

From a historical point of view, such diagrams [1–10], which can clearly show the
performance of typical thermodynamic cycles, should properly be referred to as Bejan diagrams
since the fundamental diagram was first proposed by Bejan [1] nine years before Bucher [3].
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Appendix

Figures 2(a) and 2(b) may easily be constructed by using the following rules:

1. Draw a vertical axis of absolute temperaturesT with T = 0 at the point ‘a’.
2. Mark the points ‘b’ and ‘c’ on theT axis at the temperaturesTh andTc of the heat source

and heat sink between which the Carnot engine operates and draw horizontal lines through
these points.

3. Draw a semicircle having the segment ‘ab’ as its diameter. The point of intersection
between the semicircle and the horizontal line through ‘c’ is labelled ‘d’.

4. Draw a slanted line through ‘a’ and ‘d’. The point of intersection of this line with the
horizontal line through ‘b’ is labelled ‘f’.

5. Draw a vertical line through ‘f’. The point of intersection of this line with the horizontal
line through ‘c’ is labelled ‘g’.

6. Mark a point ‘e’ on theT axis at a temperatureTw such that the distance ‘ae’ equals the
length of the segment ‘ad’.

7. In figure 2(a) the horizontal line through ‘e’ intersects the slanted line ‘af’ at the point ‘h’
and the vertical line ‘fg’ at the point ‘i’. A vertical line drawn through ‘h’ intersects the
horizontal line ‘cg’ at the point ‘m’ and the horizontal line ‘bf’ at the point ‘j’.

8. Draw a slanted (dashed) line from ‘a’ to ‘j’. This line intersects the horizontal line ‘cg’ at
the point ‘l’.

9. The lengths of the segments ‘bf’, ‘eh’, ‘cd’, ‘dm’ and ‘hi’ represent the heat and work
exchangesQ1,Q,Q2,W1 andW2, respectively, defined in subsections 2.1 and 2.2.

6′. In figure 2(b) steps 1 to 5 are the same as above. Next, mark the midpoints ‘r’ and ‘s’ of the
segments ‘be’ and ‘ec’ and draw horizontal lines through ‘r’ and ‘s’. The corresponding
temperatures areTw1 andTw2.

7′. The two horizontal lines through ‘r’ and ‘s’ intersect the slanted line ‘af’ at the points
‘n’ and ‘x’, respectively. A vertical line drawn through ‘n’ intersects the horizontal lines
through ‘b’, ‘s’, and ‘c’ at the points ‘o’, ‘u’, and ‘v’, respectively.

8′. Draw a slanted (dashed) line from ‘a’ to ‘o’. This line intersects the horizontal line ‘cg’
at the point ‘y’.

9′. The lengths of the segments ‘rn’, ‘sx’ and ‘xu’ represent the heat and work exchangesQ1,
Q2 andW3, respectively (see subsection 2.3).
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