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Abstract

A distillation column with the possibility of heat exchange on every tray (a fully
diabatic column) is optimized in the sense of minimizing its total entropy production.
This entropy production counts the interior losses due to heat and mass ¯ow as well
as the entropy generated in the heat exchangers. It is observed that the optimal
heating distribution, i.e. the heat exchange required on each tray, is essentially the
same for all trays in the stripping and recti®cation sections, respectively. This makes a
column design with consecutive interior heat exchanger and only one exterior supply
for each of the two sections very appealing. The result is only slightly dependent on
the heat transfer law considered. In the limit of an in®nite number of trays even this
column with resistance to transfer of heat becomes reversible.

1. Introduction

A number of recent works have examined optimal heating strategies for partially and
fully diabatic distillation columns [1±9]. All of these works have focused on the
entropy production inside the column while relegating to the environment the entropy
production associated with getting the requisite heat exchanges to happen at desired
rates. The present paper considers the question of how this heat exchange, when
included in the entropy minimization, affects the optimal heating pro®le for fully
diabatic columns. In the absence of counting irreversibilities due to heat exchange
between the column and its surroundings, the optimal pro®le is independent of rate of
operation in the sense that the optimal heating pro®le scales directly with the feed rate.
This is no longer the case once the irreversibilities of the heat coupling to the outside
of the column are included. For slow rate of operation the solution is essentially
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unchanged from the solution for the problem without irreversibilities due to the heat
transfer. For fast operation, the entropy production inside the column becomes
negligible compared to the irreversibilities due to the heat exchange which then
dominates the behavior of the optimum.

2. Irreversible Heat Exchange

Consider an N tray completely diabatic distillation column (Fig. 1) separating an
ideal binary mixture. The trays are numbered from n � 1 at the top to n � N being
the reboiler. The entropy production inside the column per unit time due to heat and
mass ¯ow can be written as

�Su; sep �
XN

n�1

Qn

Tn

��Sstreams; �1�

where Qn is the heat added to tray n of the column at temperature Tn and �Sstreams is
the overall entropy ¯ow associated with the three external mass streams, i.e. the feed
F, the bottoms B, and the distillate D. Note that this expression only re¯ects the
entropy production associated with the separation itself. It does not include
irreversibilities due to external couplings like heat transfer. Previous studies have
minimized �Su; sep [1±5] using the temperature pro®le Tn; n � 1; . . . ;N as the control
variables.

Fig. 1. Diabatic distillation column with possible heat exchange on all trays.
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We assume that each tray is in thermodynamic equilibrium and thus the mole
fractions x and y of the light component, 1 in the liquid and vapor phases, re-
spectively, are related to the temperature by the Eqs. [10]

y � x exp
�Hvap;1�T�

R

1

Tb;1
ÿ 1

T

� �� �
�2�

1ÿ y � �1ÿ x� exp
�Hvap;2�T�

R

1

Tb;2
ÿ 1

T

� �� �
; �3�

where Tb;1 and Tb;2 denote the boiling points of the two pure components. The
enthalpies of vaporization �Hvap;1�T� and �Hvap;2�T� are calculated as

�Hvap;i�T� � �H
vap;i
b � �T ÿ Tb;i��cvap;i

p ÿ cliq;i
p �; �i � 1; 2�; �4�

where �H
vap;i
b are the heats of vaporization of the pure components at their respective

boiling points, and cliq;i
p and cvap;i

p are their heat capacities in the liquid and vapor
phases. Equation (4) requires the heat capacities to be temperature independent.

The solution of the column proceeds from the control variables Tn to the heat
requirements Qn by ®rst calculating the concentration pro®les xn and yn using Eqs. (2)
and (3). We next proceed to use the mass balance conditions to ®nd the ¯ow rates Ln

and Vn of liquid and vapor originating on tray n. Finally, we use the energy balance
condition to ®nd the Qn. For the mass balance conditions it is easiest to start with the
overall mass balance.

In steady state operation the feed, distillate, and bottoms obey the balance equations

F � D� B �5�
xFF � xDD� xBB; �6�

where xF, xB, and xD denote the corresponding mole fractions of the more volatile
component in the liquid phase. Usually the purities of the feed, distillate, and bottoms
are speci®ed so that a given feed rate F determines the rate of distillate and bottoms
production through

D � xF ÿ xB

xD ÿ xB

F �def
d F �7�

B � xF ÿ xD

xB ÿ xD

F �def
b F: �8�

The last expression in each equation de®nes the constants d and b.

The amount of material ¯owing out of a tray must be equal to the amount of material
¯owing into a tray. Hence, vapor rate Vn�1 coming up from tray n� 1 and liquid rate
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Ln ¯owing down from tray n have to balance the distillate D above the feed and the
bottoms B below the feed, respectively, both as total amount and componentwise,

Vn�1 ÿ Ln � D above feed

ÿB below feed

�
�9�

yn�1Vn�1 ÿ xnLn � xDD above feed

ÿxBB below feed:

�
�10�

On the uppermost tray �n � 1� the balance equations become V1 � D� L0 and
y1 � xD; for the lowest tray (n � N, the reboiler) one obtains LN � B and xN � xB.
While for optimal diabatic columns the re¯ux L0 is zero, its purpose in an adiabatic
column is to carry heat out of the column. This function is not needed in the diabatic
column since heat can be taken directly from any tray.

The feed tray n is taken to be the tray on which the liquid light mole fraction xn is
equal to or immediately below the feed concentration xF i.e. xnÿ1 > xF � xn.

The heat needed on each tray to give enthalpy balance is obtained from

Qn � VnHvap
n � LnHliq

n ÿ Vn�1H
vap
n�1 ÿ Lnÿ1H

liq
nÿ1: �11�

The enthalpies Hvap and Hliq carried by the vapor and liquid ¯ows are determined by

Hliq�T� � x cliq;1
p �T ÿ Tref� � �1ÿ x�cliq;2

p �T ÿ Tref� �12�

Hvap�T� � y cliq;1
p �T ÿ Tref� ��Hvap;1�T�

h i
� �1ÿ y� cliq;2

p �T ÿ Tref� ��Hvap;2�T�
h i

�13�

with the zeropoint given through a reference temperature Tref . Here we assume
constant heat capacities, a noninteracting mixture of ideal gases for the vapor phase,
and an ideal solution for the liquid phase [11].

Entropy carried to the surrounding through mass ¯ow amounts to

�Streams � ÿFsF � DsD � BsB; �14�
where the entropies per mole of the mass ¯ows are given by

si � xi sref;1 � cliq;1
p ln

Ti

Tref

� �
� �1ÿ xi� sref;2 � cliq;2

p ln
Ti

Tref

� �
� R�xi ln xi � �1ÿ xi� ln�1ÿ xi��; �i � F;D;B�; �15�

again with proper zeropoints given through sref;1 and sref;2. Note that �Sstreams is ®xed
by the speci®cations of the process and is therefore not part of the optimization.

The summary above shows why the temperature pro®le is a particularly convenient
set of control parameters since, given the Tn's, straightforward calculations allow the
evaluation of all the other column quantities. We now extend this calculation to
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include the entropy production due not just to the separation as in Eq. (1) but also to
the heat exchange. Note that all the ¯ows in the column are proportional to the feed
rate F. This makes it natural that current studies [1±5] all optimize the entropy
production per unit feed rate. Letting

qn � Qn=F �16�

we ®nd using the de®nitions of d and b from Eqs. (7) and (8),

�Su; sep �
XN

n�1

Qn

Tn

��Sstreams � F
XN

n�1

qn

Tn

ÿ sF � dsD � bsB

 !
: �17�

3. Entropy Production Due to Heat Exchange

To explore the effects of non-vanishing rate heat exchange which must proceed across a
®nite temperature difference and therefore produce entropy, we introduce two simple
models for the heat transfer into the trays, the Newton and Fourier laws. For convenience
we take the heat transfer coef®cients to be the same for all trays in both models.

The entropy production due to heat exchange to the n-th tray is

�Su; hx
n � Qn

1

Tn

ÿ 1

Tex
n

� �
: �18�

For a given amount of heat transferred Q, the required external temperature Tex

depends on our assumed heat transfer law. This law relates the heat transferred to the
tray to the temperature inside the tray and to the temperature Tex in the heat exchange
¯uid outside the column. With our choice of the internal temperature pro®le as the
control parameter, it is convenient to eliminate this dependence on the external
temperatures by solving for the external temperature in terms of the heat transferred
and the internal temperature and to use the resulting expression to eliminate Tex in
Eq. (18). This is carried out below for both of our heat transfer laws.

It is noteworthy that with this procedure the entire optimization, including the losses
in the heat exchangers, is still parameterized solely by the internal temperature. The
external temperatures do not add a new degree of freedom but are consequences of
the internal pro®le.

3.1. Fourier Heat Conduction

The ®rst model is Fourier's law of heat transfer. Here heat transfer is taken to be
proportional to the difference of the inverse temperatures, i.e. to the thermodynamic
force,

Qn � ~�
1

Tn

ÿ 1

Tex
n

� �
; ~� > 0: �19�
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where ~� is the conductance of the contact between tray n at temperature Tn and a bath
at temperature Tex

n .

Solving for 1=Tex
n in Eq. (19) we ®nd

1

Tex
n

� 1

Tn

ÿ Qn

~�
; �20�

which is substituted into Eq. (18) to yield the very simple expression, independent of
temperatures,

�Su; hx
n � Q2

n

~�
: �21�

Expressing this in terms of the heats per mole of feed qn so as to make the feed rate
dependence explicit, we get

�Su; hx
n � F2

~�
q2

n �22�
� F ~g q2

n; �23�
where we have introduced the quantity ~g � F=~� to describe the relative rate of mass
to heat ¯ow.

Summing this over our N trays, the total entropy production can be expressed as

�Su � �Su; sep ��Su; hx �24�

� F
XN

n�1

qn

Tn

ÿ sF � dsD � bsB � ~g
XN

n�1

q2
n

 !
: �25�

Here it is evident that only the internal temperatures Tn are needed to parameterize
the full operation of the column. Further note that since the total amount of heat
exchanged,

PN
n�1 qn, is limited, the last sum in Eq. (25) vanishes for an in®nite

number of trays. This means that even with heat exchanger losses the separation
becomes reversible in this limit.

3.2. Newtonian Heat Conduction

In the second more conventional model, Newtonian heat conduction, the heat transfer
is taken to be proportional to the difference of the temperatures,

Qn � ��Tex
n ÿ Tn�; � > 0: �26�

Proceeding in the same fashion as in the previous subsection by eliminating Tex
n in

Eq. (18) we ®nd

1

Tex
n

� 1

Tn � Qn

�

�27�
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and thus

�Su; hx
n � Q2

n

�

1

Tn Tn � Qn

�

� � �28�

� Fg
q2

n

Tn�Tn � gqn� �29�

with g � F=�.

This results in a total entropy production of

�Su � �Su; sep ��Su; hx �30�

� F
XN

n�1

qn

Tn

ÿ sF � dsD � bsB � g
XN

n�1

q2
n

Tn�Tn � gqn�

 !
: �31�

Although a bit more complicated than Eq. (25), we see that the total entropy
production is still a function of the internal temperatures Tn only. Note also that for
qn < 0 (heat being withdrawn from the column), the value of g is limited to be in the
range between 0 and Tn=qn. The limit g � 0 corresponds to vanishing feed rate or
in®nitely fast heat exchange, while the limit g � Tn=qn corresponds to the highest
possible rate of heat removal for which Tex

n � 0.

4. Results

As model systems, three columns of different length (25, 45, and 65 trays) are chosen
to separate an ideal 50/50 benzene/toluene mixture. The required purities are 95% for
the distillate and 5% for the bottoms, respectively. From a practitioner's point of view
these columns are excessively long for the purity prescribed, but control requires
extra freedom, and our results are particularly evident for long columns. Powell's
routine [12] is used to minimize the total entropy productions (31) and (25).

Figure 2 shows the optimal temperature pro®les and corresponding heating require-
ments for a 25-tray column with Fourier heat conduction (left frames) and Newtonian
heat conduction (right frames). The three curves in each frame are calculated for
g � 0 and for two increasingly severe transfer resistances. The value of zero
represents perfect heat conduction and is therefore identical to the previous studies of
optimal distillation considering only internal losses [1±5]. The intermediate value
corresponds to realistic heat conductance in a commercial heat exchanger, while the
largest value of g is included to show the strongly resistive regime. The values of
g and ~g are chosen to correspond to roughly the same temperature differences
across the conductances and thus differ by a factor of 1:4� 105 K2 due to the forms
of the two transfer Eqs. (26) and (19). The required temperature pro®les are almost
linear regardless of heat resistance. It is also clear that the form of the transfer law has
very little effect on the optimal temperature sequence and hence the heating demand.
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This speaks in favor of using the simpler Fourier expression (25) for the entropy
production.

A further comparison between the two heat transfer laws is provided by Figure 3,
a log-log plot of the total entropy production relative to reversible heat transfer
for a variation of g and ~g over 8 orders of magnitude. The realistic value of
g � 3� 10ÿ4 mole K/J also used in Figure 2 and the corresponding ~g is marked on
the curves. The two curves are remarkably similar. We see that heat resistance is
insigni®cant for g < 10ÿ5 and dominant for g > 10ÿ3 with normal operation right in
the middle of the transition interval. The type of heat transfer (Newtonian or Fourier)
is immaterial.

Fig. 2. Optimal temperature (upper frames) and heat duty pro®les (lower frames) for a 25-tray
column separating a 50/50 mixture of benzene-toluene. The left frames are for a Fourier heat
law connecting the heat exchangers to the supply ¯uids, the right frames for a Newtonian
conduction law. The relative ¯ow parameters g and ~g are as indicated on the ®gure. The value
zero corresponds to no entropy generation in heat exchange, i.e. reversible. The middle value
is industrially realistic, while the lower value is strongly resistive.
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Figure 4 shows the optimal heating demands for columns of length 25, 45, and 65
trays using Fourier conduction. As indicated in Figure 2, the corresponding
Newtonian results are indistinguishable and are therefore not shown here. The shorter
column displays the characteristic `inverted-U-U' shape of the heating curves
observed in past studies for near reversible heat exchange. This is quickly smoothed
out with increasing heat resistance where the internal losses, relatively speaking,
become less signi®cant. The longest column by contrast, even for very slight heat
resistance, is operated optimally with an essentially ¯at heating pro®le: the same rate
of heat transfer on every tray in each section of the column. This resistive effect is
quite surprising, quickly washing out the structure of the optimal unconstrained
column. It promises well for the simpli®ed diabatic column design advocated by
Rivero [8, 9] in which the external heat exchange medium is passed in sequence
through heat exchangers on one tray after another in the stripping and rectifying
sections, respectively. This design obviously alleviates the need for costly
independent heat supply circuits for each tray. At the same time all heating curves
show a marked reduction in heat duty for the reboilers and condensers, making it
possible to include them inside the column rather than as separate exterior units.

The corresponding curves for the entropy production on each tray Figure 5, are even
more illuminating for the effect of heat resistance. The entropy production due to heat
and mass transfer on the trays alone is by no means ¯at, rather it follows the general
shape originally developed in interior optimization. The entropy production due to

Fig. 3. Log-log plot of the total entropy production relative to reversible heat transfer for a
variation of g and ~g over 8 orders of magnitude. Solid line: Newton's law of heat exchange;
dashed line: Fourier's law of heat exchange. The special point marked corresponds to
industrially realistic values of heat conductance.
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heat exchange, is not ¯at either, but together the internal and external entropy
productions add up to an almost constant entropy production on each tray, a kind of
equipartition often claimed to be a good design principle [13]. Optimal heat exchange
on the feed plate is usually quite small and can be made zero by appropriately
balancing of the vapor/liquid composition in the feed.

Fig. 4. Optimal heat duties for the individual trays in columns of length (from top to bottom)
25, 45, and 65 trays with Fourier heat transfer. The relative ¯ow parameter ~g is as indicated
in the ®gure. The value zero corresponds to no entropy generation in heat exchange, i.e.
reversible. The middle value is industrially realistic, while the lower value is strongly resistive.
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Fig. 5. Optimal distribution of entropy production on the individual trays in columns of length
(from top to bottom) 25, 45, and 65 trays with Fourier heat transfer. Entropy production due to
the internal heat and mass ¯ows, the heat exchange and the sum are shown separately.
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The entropy savings by using a diabatic column compared to a conventional adiabatic
one are evident from Figure 6. Even for the shortest column of 25 trays, the adiabatic
entropy production (including heat exchanger losses) is four times as large as the
losses in the diabatic column, with the heat exchangers accounting for about two
thirds of the losses. In the diabatic column, the contribution of heat exchange varies
from about half for the shortest column to about two thirds for the longest column.
To indicate the ultimate lower limit of entropy production without regard to heat
exchange losses, the values for g � 0 are shown as the leftmost columns in each
group. In all the diabatic columns the internal separation losses hardly change by the
introduction of heat exchanger losses, they are essentially additive, whereas in the
adiabatic column even the internal losses are dramatically larger.
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