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Convective heat transfer law for an endoreversible engine
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A generic model of an endoreversible engine is developed for studying the effect of convective heat
transfer, the rate of which depends on the temperature difference to the power n where 7 is close to
unity. The efficiency at maximum power production is found to have as its principal part the
Curzon-Ahlborn [Am. J. Phys. 43, 22 (1975)] expression and a small correction which depends
slightly on the temperature ratio of the heat engine reservoirs and the relative heat conductances to
the hot and cold sides. By a proper choice of the independent variables it is demonstrated that the
analysis becomes simple and approximate analytical expressions are easily derived. © 2006
American Institute of Physics. [DOI: 10.1063/1.2212271]

I. INTRODUCTION

Finite-time thermodynamics extends thermodynamic
analysis to include finite-time constraints, €.g., nonvanishing
heat transfer rates, friction, and heat leaks.' The effect of the
heat transfer mode for endoreversible heat engines was stud-
ied, assuming a temperature dependence to the power n, g
«T{=T, (n=1 for Newtonian heat transfer and n=4 for ra-
diative heat transfer),%4 and temperature difference to the
power n? q><(T,—T,)". Analysis of the endoreversible heat
engine with Newtonian heat transfer law led to the conclu-
sion that the efficiency at maximum power production is
independent of the heat conductance,5 the so called Curzon-
Ahlborn efficiency,

nea=1 - VT Ty, (1)

where T~ and Ty are the cold and the hot reservoir tempera-
tures between which the endoreversible heat engine works.
This conclusion is found to be no longer valid when a non-
linear heat transfer law is used.”* For example, in Ref. 6 the
temperature difference dependence using the power n=5/4
has been considered.

The Curzon-Ahlborn efficiency is remarkable in that it,
like the Carnot efficiency, depends only on the ratio of the
reservoir temperatures.5 Furthermore, this expression was
found to agree quite well with observed efficiencies of real
power plants.5 However, this agreement was discussed and
shown to be fortuitous.”

The power n of the temperature difference for convec-
tion heat transfer was assumed to be n=>5/4 and later modi-
fied to fit the observed efficiency of heat engines.6 However,
there are many other involved sources of losses to affect the
empirical value of the efficiency of heat engines or power
plants, e.g., heat leaks, fluid friction, transformer and genera-
tor losses, power to run pumps and compressors, and dc/ac
conversion efficiency, not just those of the thermal cycle it-
self. Thus the measured efficiencies are bound to be less than
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the theoretical ones and there is no physical basis to modify
the value of n in order to better match the empirical data.

The chosen value of n=5/4 is based on natural convec-
tion heat transfer analysis.8 For this specific choice of n the
efficiency of the endoreversible engine was derived
numerically6 and the efficiency found by solving two
coupled nonlinear equations simultaneously.

In the present study we will consider the temperature
difference dependence to the power n where n is close to
unity, n=1+¢, and ¢ is small. This type of dependence is
often used in convective heat transfer analysis, and the power
n is close to unity.8 The efficiency at maximum power w is
derived as an approximate analytic expression which is
shown to have a principal part, 7c,, and small correction,
i.e., 7,=Nca+ 7€, Where 7, depends on both the heat res-
ervoir temperature ratio and the heat conductance ratio « for
the couplings to the two heat reservoirs. In the current analy-
sis we choose the time division s (the fraction of the total
cycle time during which the working fluid is coupled to the
hot reservoir) and the thermal efficiency of the engine as the
two independent variables involved in the problem. It will be
shown that this choice of variables simplifies the analysis.
The results derived in the present study are different from
those derived earlier® since we perform the analysis in gen-
eral terms and derive analytic equations for the efficiency at
maximum power output.

In Sec. II the model is introduced and the solution is
given in Sec. III. Finally, Sec. IV presents the discussion and
our conclusions.

Il. MODEL

In dealing with convective heat transfer processes the
following heat transfer law is often used:

40 _ p
q_ dt _K.Y(AT) ’ (2)

where k is the effective heat conductance of the system and
the exponent n is close to unity. In the current analysis of the
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FIG. 1. Schematic of the endoreversible engine.

endoreversible heat engine we assume such a heat transfer
law and we derive the efficiency of the engine at maximum
power production. Consider an endoreversible heat engine
which works between two heat reservoirs, the hot side at Ty
and the cold side at T (see Fig. 1). The total amount of heat
transferred from the hot reservoir to the engine’s working
fluid at 7}, during the contact time ¢, is given by

On = rkuty(Ty = T))". 3)
Similarly for the cold side we have
QC = KCtC(TC - TC)n~ (4)

For reasons of energy conservation the work produced in a
complete cycle is

W=0py-0c, &)

while the second law applied to the interior reversible engine
yields

_91_Qc_
Th Tc

AS 0. (6)

The independent variables may be chosen in many dif-
ferent ways, e.g., x=Ty—T), and y=T,— T, (as was chosen by
Ref. 6), or T), and T, with some choices more convenient
than others. In the present study we will use the dimension-
less time division of the hot side, s=1,/ 7, and the thermody-
namic efficiency, n=W/Q=1-T,/T),, where 7 is the total
cycle time, since this choice of independent variables simpli-
fies the analysis. Introducing the last set of variables into the
first and second laws of thermodynamics, the power produc-
tion takes the form

w KhTZﬂ?( e — 77)n
w=—
e

(= (1) (1= ) (1 - )]y

(7)
where 7.=1-T/Ty is the Carnot efficiency of the complete
endoreversible engine, and k=k;,/ k..

To find the maximum power we differentiate with re-
spect to s and 7. The differentiation with respect to s leads to

1
;= 1+ Kl/(n+l)(1 _ 77)(1—}1)/(1+n)’ (8)

so that the power output expression simplifies to
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FIG. 2. Power output, relative to its maximum value, as a function of engine
efficiency # for n=5/4 and a heat reservoir temperature ratio of 0.5 for
different values of heat conductance ratio k=«k;/k,. Frame (a) covers the
complete range of 7, while frame (b) is a magnification of the maximum
power region. For comparison, the case n=1 is plotted.

_ ki Tyn(n.— m)"
w= (1 _ 77)"[1 + Kl/(1+n)(1 _ 77)(1—;1)/(1+n)]1+n‘

&)

The power vanishes at the two extremes: the open circuit
limit where 7= 7, and the short circuit limit 7=0. The maxi-
mum power point is situated between these two extremes. In
Fig. 2 we plot the power relative to its maximum value ver-
sus efficiency 7 for 77,=0.5, k=1, and two values of n: 1 and
5/4. The maximum power point for n=>5/4 is shifted to the
left when compared to n=1. This maximum power point
slightly depends on «, as demonstrated by Fig. 2(b).

In order to find the efficiency at maximum power 7,, we
need to differentiate with respect to 7. The result of this
process leads to a nonlinear equation of 7,

7-l+n+n(l-n)]+n

.\ 7](776 _ 7])(1 _ n)Kl/(]+n)(l _ 7])(1—11)/(l+n)
1+ Kl/(l+n)(l _ n)(l—n)/(1+n)

=0. (10)

In principle this equation can be solved numerically for
given «, n, and 7,; however, it is more instructive to find
approximate solutions for special situations. In the following
section we will consider three different cases: (1) n values
close to unity, i.e., n=1+& where ¢ is a small number, for
which we will find an approximate expression for the effi-
ciency at maximum power; (2) k=0; and (3) k— . The last
two cases will be solved exactly for the efficiency and the
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resulting expressions will serve as a check for the approxi-
mation derived for the case 1.

lll. CONVECTION

We restrict n to be close to unity, n=1+¢& where € is a
small number which is representative of convective heat
transfer. For this special case we find an approximate ana-
Iytic expression for the efficiency at maximum power, based
on the expansion in powers of &,

Ny=Mo+ MmE+ . (11)

By substitution of this power expansion into the derived
equation for # [Eq. (10)], and collecting terms of zeroth and
first orders, we find

m=1-V1-17, (12)
and
S ll_nJr\ﬁc(m—no)}
21 -1 T Vk+1
—
Ve(1 - ¢)
=(1—¢){¢+r—}, (13)
Ve + 1

where ¢= \/1—_776. The principal part of the efficiency at
maximum power, 77y, is the Curzon-Ahlborn expression in
the case of Newtonian heat transfer law n=1.> The first order
correction 7, is a small negative addition to the Curzon-
Ahlborn expression. The effect of the distribution of heat
conductance « is found only in the correction term 7,. Thus
the efficiency at maximum power is quite insensitive to the
value k.

Let us consider two specific cases in more detail, k=0
corresponding to perfect conduction to the cold reservoir and
k— o corresponding to perfect heat conduction to the hot
reservoir. The derived exact results will help us to check the
accuracy of the approximate expression Egs. (11)-(13).
When =0 the exact Eq. (10) for 7 reduces to a quadratic,
and its solution is

1
M(k=0) = 5{1 +n+ (1 —”)77c

~\[l+n+1-n)nJ-49}. (14)

Similarly, when k— o0, Eq. (10) reduces again to a quadratic
with the solution

1+n—\(1+n)—4dnny,
2n ’

Mx—we) = (15)

As a numeric example let us take 7-=0.5 corresponding
to, e.g., Ty=600 K and T-=300 K, n=5/4 corresponding to
natural heat convection heat t1ransfer,8 and the two extremes
of k. For k=0 the exact efficiency at maximum power from
Eq. (14) is %,=0.269 and the approximate from Egs.
(11)-(13) is 0.268. For x—o the corresponding exact
calculation leads to the value of 0.259 while the approxima-
tion gives 0.256. It is clear that the approximate Egs.
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FIG. 3. Efficiency as a function of reservoir temperature ratio (7/Ty) for
n=>5/4 and different values of k=k,/k,.. For comparison the Carnot effi-
ciency (7¢) and Curzon-Ahlborn (7¢,) efficiency are plotted on the same
plot.

(11)—(13) provide a good representation. These maxima may
be seen in Fig. 2(b).

Figure 3 depicts the efficiency at maximum power pro-
duction, 7, for the full range of possible reservoir tempera-
ture ratios. For comparison the Carnot and Curzon-Ahlborn
efficiencies are included. It is seen that convective heat flow
decreases the engine efficiency compared to Newtonian heat
flow [Curzon-Ahlborn (CA)], most for thermal resistance on
the cold branch.

IV. CONCLUSIONS

In the present analysis we considered an endoreversible
heat engine with convective heat transfer such that the heat
transfer takes place according to the temperature difference
to the power n with n close to unity, n=1+¢& where ¢ is a
small number.

Following an expansion procedure we found an approxi-
mate analytic expression for the efficiency at maximum
power production which consists of a principal part equal to
the Curzon-Ahlborn expression reduced by a small contribu-
tion which depends weakly on the heat conductance ratio «.
The approximate expression was checked against exact ex-
pressions for the extreme cases k=0 and k— % and found to
be in agreement to within 1%. From the derived expression
for the efficiency at maximum power it is clear that this
efficiency is quite insensitive to the ratio .

The present study improves the analysis of this heat en-
gine over the analysis given by Ref. 6 in two ways: (1) in the
present study we have to solve one nonlinear equation for the
efficiency, while in Ref. 6 two nonlinear coupled equations
had to be solved simultaneously, and (2) no data fitting is
needed as was done in Ref. 6.

In the present analysis, we retain complete generality of
the model, and by proper choice of the independent vari-
ables, we derive one nonlinear equation for the efficiency at
maximum power production. In principle this equation could
be solved numerically, but it is more illustrative to find
approximate analytical expression for special cases. While
for the extreme cases of k=0 and k— % we derived exact
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analytical expressions for the efficiency. These expressions
served as check for approximate formula Egs. (11)—(13).
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