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Abstract: The traditional connection between rate constants and free energy landscapes is extended to de-
�ne e�ective free energy landscapes relevant on any chosen timescale. Although the Eyring–Polanyi transi-
tion state theory speci�es a �xed timescale of τ = h/kBT, we introduce instead the timescale of interest for
the system in question, e.g. the observation time. The utility of drawing such landscapes using a variety of
timescales is illustrated by the example of Holliday junction resolution. The resulting free energy landscapes
are easier to interpret, clearly reveal observation time dependent e�ects like coalescence of short-lived states,
and reveal features of interest for the speci�c system more clearly.
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1 Introduction
In the present note, we consider the representation of free energy landscapes as a visualization aid for reac-
tions, or reaction sequences, for which rate constants are known. This is a frequent situation in biochemical
settings, often for rather complex reactions and reaction networks. To this end, we suggest a generalization
of how these landscapes are to be drawn, taking account of the observation timescale of interest. Transition
state theory [1–6] already provides a simple technique for using rate constants to calculate free energies of
activation, i.e. a way to turn rate constants into a free energy landscape. Here, we would employ the Eyring–
Polanyi theory expression

k = Z exp(−∆G‡/kBT), (1)

where ∆G‡ is the free energy of activation, kB is Boltzmann’s constant, T is the temperature, and Z = kBT/h
is a function of temperature, corresponding to 6.25 × 1012 s−1 at T = 300K. Earlier models, such as collision
theory, involve very similar expressions for k with Z identi�ed as a frequency factor of some sort. Another
way to think about this expression is to regard Z as the unit of frequency (or 1/Z as the unit of time). This
viewpoint enables us to analyze relative values for the rate constants in reduced units: k/Z. We can then
consider the e�ect of varying this natural unit of frequency or timescale τ on our representation of the free
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Figure 1. Schematic view of the Holliday junction resolution kinetic model for recombination of two DNA double strands, green
and blue. (A) Four-species model: Holliday junction intermediates (loaded with the integrase enzyme and other accessory pro-
teins shown as the gray ellipses), species B and C, undergo either top-strand (green) resolution toward parental substrates,
species A, or bottom-strand (blue) resolution toward products, species E. k1, k−1, and k3 are the rate constants for each round
of catalytic event, whereas k2 and k−2 are the isomerization rate constants. (B) Three-species model: species B and C are
viewed as a single species T that resolves to either A or E. This results in modi�ed rate constants k̂−1 and k̂3.

energy landscape. The formof the resulting landscape can thenbe interpreted as a function of the observation
timescale, where a value of τ = 1/Z = 1.6 × 10−13 s corresponds to the standard timescale of transition state
theory at T = 300K.

2 The recipe
Drawing the free energy landscape given a set of rate constants is straightforward and is entirely based on a
slightly rearranged version of equation (1):

∆G‡τ
kBT
= − ln(k) + ln(Z). (2)

To apply this equation to a given sequence of reactions, we begin at one end of the reaction chain and assign
(arbitrarily) the �rst reactant a free energy of 0. We then alternate adding and subtracting ∆G‡τ values to �nd
the e�ective free energy of the next node in the reaction sequence.

For example, consider the sequence A↔ B↔ C↔ E shown in Figure 1 and discussed in more detail in
Section 3. After we assign G(A) = 0, we assign the transition state G‡τ

AB/kBT = − ln(k1) + ln(Z). After that, we
assign

G(B)
kBT
=
G‡τ

AB
kBT
+ ln(k−1) − ln(Z) = ln( k−1k1 ).

Then, for the transition state between B and C, we assign G‡τ
BC/kBT = G(B)/kBT − ln(k2) + ln(Z). Continuing

in this fashion, the entire landscape is assembled.
Note that the choice of timescale only enters via the additive ln(Z) term in (2). In particular, this con-

�rms that the relative free energies of all the stable species (obtained by alternate addition and subsequent
subtraction of such ln(Z) terms) are not a�ected by the chosen observation timescale. Similarly, the free en-
ergies of the various barriers are only a�ected by the �rst addition of this term, the rest again involving the
subtraction and subsequent addition of further ln(Z) terms. Thus, the only e�ect of varying the unit of time
is to adjust the collection of barrier heights for the desired view on the timescale of interest – their relative
heights, ∆∆G‡τ, remain una�ected.
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Figure 2. The free energy landscape of the Holliday junction resolution reaction. (Left) The free energy landscape of the four
species and the transition states corresponding to Figure 1 A for Z in the range 1012 to 10−3 s−1. This means that for timescales
larger than τ = 1/Z = 1 s (red curve), states B and C are equilibrated and should rather be thought of as a single state T (right).
The portions representing negative ∆G‡τ have been dotted; on these timescales, the two species should be combined to give
one e�ective species T. The portions of the landscape past trans 3 are dashed to show that the free energy of E is not known.

We further note that the derivative of ln(k) with respect to temperature is again una�ected by variations
of Z, and so Arrhenius’ or Kramers’ law is not a�ected, and the energy of activation calculated from the 1/T
dependence of the rate constant is the same independent of our choice of timescales.

3 The example
Consider our example of the reaction sequence of con�gurational changes involved inHolliday junction reso-
lution in site-speci�c recombination of two DNA double strands [7, 8]. The reaction (see Figure 1) can bewrit-
ten as A↔ B↔ C↔ E. In Figure 2, we explicitly show the corresponding free energy landscapes for di�erent
values of Z. The minima are una�ected, whereas the barriers are reduced dramatically from Z = 1012 s−1
down to Z = 10−3 s−1. Note that the middle barrier, trans 2, disappears at Z = 1 s−1; see Figure 2 (left). This
means that for timescales τ = 1/Z larger than1 s, statesB andC are equilibrated and should rather be thought
of as a single state T; see Figure 2 (right). The other two barriers, trans 1 and trans 3, only disappear at much
longer timescales larger than τ = 103 s.

As is typical of such studies, a comparison of the reaction in the wild type and two mutants was per-
formed. Figure 3 shows the free energy landscapes for the three mutants, WT, TS, and BS, using Z = 1012 s−1
and Z = 1 s−1. The tall barriers in the Z = 1012 s−1 version (Figure 3, left) obscure the di�erences between
the mutants, whereas in the Z = 1 s−1 version (Figure 3, right), the di�erence of the three mutants is clearly
visible.

Another fact easily apparent from Figure 3 (right) but impossible to see from Figure 3 (left) is that on
the 1-s timescale, forms B and C are e�ectively merged, because on that timescale, the free energy barrier is
below 1 kBT between forms B and C. A better picture of the reaction on the, say, 10-s timescale is obtained
by merging the two forms into an equilibrium species T = (B↔ C).

4 Discussion
Changing the value of Z used in (1) to a frequency other than the kBT/h value dictated by transition state
theory changes the corresponding interpretation of Z from a “velocity” over the barrier along the reaction
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Figure 3. A direct comparison of the free energy landscapes drawn with Z = 1012 s−1 vs. Z = 1 s−1 is shown for three mutants
WT, TS, and BS. The di�erence between these is more visible on the 1-s timescale than on the picosecond timescale.

coordinate [3] to a frequency for “attempts” to cross the barrier: an observational frequency that de�nes
what constitutes one “attempt”. The factor exp(−∆G‡τ/kBT) is then naturally interpreted as the fraction of
attempts that succeeded in crossing the barrier.

In particular, on su�ciently long timescales τ, with correspondingly low attempt frequencies Z = 1/τ,
this frequency can become smaller than the observed rate constant k and so the exponential term is greater
than 1, giving an apparently negative barrier height ∆G‡τ. In this case, we have reached an observational
timescale on which the two basins have e�ectively merged and are represented by only one species: the equi-
librium mixture of the species in the two basins.

Such mergers of basins (each technically corresponding to a so-called locally ergodic region [5, 6]) rou-
tinely occur on many di�erent timescales for a wide variety of complex systems ranging from spin glasses
[9], to polymers [10], to clusters [11] and crystalline compounds [12] tomulti-minima optimization problems
[13]. As a consequence, the observed transition rates represent the probability �ows among the physically,
chemically, or biologically relevant distinct states of the system, e.g. (A, B, C, E) above. Observing these �ows
can be used to derive the corresponding e�ective free energy barriers [14–16] separating these states on the
(timescale-dependent) free energy landscape.

Thus, for example, chemical species are often merged on timescales large compared to their interconver-
sion time. In fact, one is often forced to do so by certain observations. For example, ammonia NH3 stays in
one of two pyramidal structures on typical observation times at low temperatures, whereas at higher temper-
atures, the barrier for the pyramid to invert is low compared with kBT and a mixture of the original and the
inverted pyramid is a better description. Quite generally, we note that there can often be a trade-o� between
longer timescales and an increase in temperature [13]. In fact, two of us [17] recently described a gener-
alization for grouping structures that are connected by free energy barriers below a certain threshold and
explained how this threshold can be related directly to the observation timescale.

The present article provides an interpretation that admits a continuous view of the representation of the
free energy landscape as a function of the timescale of interest, rather than the presence or absence of a
barrier, which is currently used. Although this admittedly gives up the ability to view ∆G‡τ as the di�erence
in free energy associated with a well-de�ned reactant and a supposedly well-de�ned transition state, the
resulting factor exp(−∆G‡τ/kBT)becomes the successful fraction of the attempts de�nedby a given timescale.
Figure 4 shows the B↔ C barrier height as a function of timescale. Note that our present arguments only
concern the solid portion of the graph shown. Note also that a, say, 2kBT barrier between forms B and C in
Figure 1 is immediately interpretable as 1 in e2 ≈ 7.4 attempts to cross the barrier succeed in crossing.

Have other workers deviated from the Z = kBT/h dictum? Yes, we here give two examples [18, 19]. Some
problems comewith their ownnatural attempt frequencies, and these frequencies havepreviously been advo-
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Figure 4. The e�ective free energy of activation at trans 2 as a function of the logarithm of the timescale chosen (in seconds)
for the B ↔ C transition. The horizontal green line indicates the transition state theory value. The portions of the graph
for timescales below the transition state theory timescale of 1/Z = 1.6 × 10−13 s and above 1 s are dashed to indicate that
timescales in these ranges should not be used. Timescales below the transition state theory time are not appropriate because
they are shorter than a molecular vibration. Timescales above 1 s have a negative free energy of activation and thus should be
represented as one merged basin rather than the two separate basins.

cated as reasonable replacements for kBT/h. For example, Levine [18] uses the frequency of binary collisions
for a bimolecular reaction. Baba and Komatsuzaki [19] calculate e�ective free energy barriers using a Monte
Carlo simulation for which the correspondence between one move and the time associated with the move is
not speci�ed. In any case, allowing the Z in equation (1) to have values other than kBT/h is not a new idea.
Previous authors who varied the value of the frequency factor, however, felt like they needed a special justi-
�cation for deviating from the accepted norm. We here argue that viewing the free energy landscape on any
timescale should not need any justi�cation beyond a desire to see how things look on the chosen timescale. In
fact, we can represent this view in terms of varying the natural units in which frequency or time is measured.

5 Conclusion
In the present article, we have considered the use of an arbitrary timescale of interest in drawing free energy
landscapes for (a series of) chemical reactions. The resultant landscapes can bring into sharper relief the
important features and reduce to the transition state expressionswhen the picosecondpre-exponential factor
of transition state theory is used. The improved visualization a�orded by the free energy landscape on the
timescale of interest can reveal how close to equilibrium the various steps in the process are likely to come
as well as show relatively small but important di�erences in height of di�erent barriers leaving a basin.
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