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Several key problems previously analyzed by simulated annealing are well described 
by a simple two-state statistical mechanical model, equivalent to the one-dimensional 
Ising model, in conjunction with an Arrhenius type rate equation. With this model 
we develop an analytic solution for the optimal cooling strategy which computation- 
ally is much faster than the previously developed adaptive algorithm. In the long 
time limit the analytic solution reduces to the one cooling schedule which is sure to 
reach the ground state. Our model predictions axe in good agreement with earlier 
numerical simulation results for optimal cooling schedules as well as for stationary 
and dynamic properties of system energy, heat capacity, and relaxation time. 

1 In t roduc t ion  

Simulated annealing is a stochastic simulation procedure for dealing with complex 

combinatorial  optimization problems [1]. I t  is part icularly well suited for systems 

characterized by an energetic structure with many  local min ima  and for which relax- 
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ation times grow exceedingly long as lower energies are sampled, i.e. as the system is 
'cooled'. 

The optimization method is based on a formal analogy between purely mathemat- 
ical combinatorial problems and statistical mechanical systems. This analogy permits 
analysis in terms of: the system energy (or cost function) E, heat capacity C, relax- 
ation time ~, and annealing time t (usually measured in computer iterations), and 
with the environment temperature T(t)  as the only control variable. The basic iter- 
ation is usually carried out with the time-honoured Metropolis algorithm [2] which 
prescribes that the probability of accepting a proposed next step which changes the 
system energy by AE is given by 

/" 1 if AE < 0, 
P ¢oopt (1.1) 

e -~EIT  if A E > 0 ,  

where the Boltzmann constant k has been set equal to unity throughout. 
The control variable in the problem is the cooling strategy or time dependence of 

T(t). The objective is to find a strategy for T(t)  that minimizes entropy production 
in the entire process for given initial and final states, since entropy production is 
equivalent to the. number of questions asked or the number of computer iterations 
performed. The problem is often alternatively expressed in terms of arriving at the 
lowest energy state in a given time. 

The aim has usually been to develop an algorithm which treats the system be- 
ing cooled as an effective black box with unknown internal structure, i.e. treating 
simulated annealing as, a general optimization algorithm as opposed to the highly 
specialized procedures available, e.g. for the traveling salesman problem [3]. Many ad 
hoc annealing schedules have been proposed, e.g., 

T ( t )  = ae (1.2) 
a 

T(t) = b + t '  (1.3) 
a 

T(t)  = t n ( b + t ) '  (1.4) 

where a and b are constants. However, the most efficient general schedule [4] is based 
on information-theoretic arguments and proceeds at constant thermodynamic speed 
[5, 6] 

dT( t )  _ vT ( t )  (1.5) 
at 

or, equivalently, 
(E) - Eeq(T) 

= (1.6) 
O" 

where v is the (constant) thermodynamic speed, (E) and a the mean energy and 
standard deviation of the natural fluctuations of the system, and finally Eeq(T) is the 
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internal energy the system would have if it were in equilibrium with its surroundings 
at temperature T. In eq. (1.5) C(T) and ~(T) are estimated based on the entire past 
history of the annealing [7]. 

The physical interpretation of eq. (1.6) is that the environment should at all times 
be kept v standard deviations ahead of the system. Similarly, eq. (1.5) indicates that 
the annealing should slow down where internal relaxation is slow and where large 
amount of 'heat' has to be transferred out of the system. When C and e do not vary 
with temperature, eq. (1.5) integrates to eq. (1.2). The constant thermodynamic speed 
algorithm continuously updates or educates itself during the annealing process "based 
on all prior events in the simulation. That is, at any given moment the simulation 
finds the temperature-dependent functions C(T) and e(T) in a manner prescribed by 
statistical mechanics and adopts the new values in the continuation of the cooling 
schedule [7]. 

The goal in the present paper is not to propose an alternative black-box algorithm, 
but rather to examine the contents of the black box to see if a relatively simple model 
for its contents can lead to an optimal cooling strategy for that particular system 
- -  and possibly systems of a similar structure - -  which is less computer intensive 
than the procedure outlined in ref. [7]. We will demonstrate that this appears to be 
the case for several problems which have been central in initial simulated annealing 
studies. For these cases we will derive an analytic cooling strategy, one that does 
not require continual updating during the annealing process, but rather is a specified 
function of temperature only. 

2 T w o - s t a t e  m o d e l  

2.1 Basic concepts  

We seek the optimal path described by eq. (1.5), but instead of compiling statistical 
information about the state space and hence C and e, we assume that the simple 
two-state model, equivalent to the one-dimensional Ising model [8], is a good approxi- 
mation to the microscopic picture of a number of complex optimization problems. We 
should emphasize that this approximation is used only for determining the optimal 
temperature schedule T(t); the annealing itself is carried out with the full energy 
function. 

The combinatorial necklace or integrated chip problem [4, 7, 9], partitioning of 
random graphs [10], and certain spin glass systems [11] are obvious candidates for 
the model, since they involve individuM vertices which can be placed in either of two 
sets. In general the two-state model should be useful for any system consisting of a 
set of weakly interacting two-level systems. 

Spin glasses [11,12] as well as real glasses [13,14] of higher than one dimension have 
also been successfully treated by a two-state model. However, our two-state model 
is not the same as the one used in these last references, where the energy difference 
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between the two levels is distributed according to Gaussian statistics. Those authors 
were motivated by trying to explain a linear dependence of the heat capacity on 
temperature which was observed in experiments on reM glasses. Because our simple 
two-state model does not incorporate a distribution of energy separations, it can- 
not predict this characteristic, nor certain other properties, of real glasses. However, 
neither is it intended nor expected to do so. Rather, recognizing its simplicity and lim- 
itations, we concentrate on appropriate classes of optimization problems, amenable to 
treatment with simulated annealing, for which we can compare theoretical predictions 
with computer-experimental results. 

2.2 Basic equa t ions  

The model used here states that each particle can be in one of two states only: a 
lower state of energy - J  and a higher state of energy + J .  For ease of notation we 
define the dimensionless temperature variable 

T 
= - - .  (2 .1)  

2J 

It is then straightforward to derive the partition function for a macroscopic system 
comprised of N such particles (N >~> i) at temperature ~: [8] from which the system 
energy and heat capacity follow directly, 

1 
E(x)  = - N J  tanh 2-~x , 

1 " C(x) - c°sh2 2"~ 

E(x) and C(x)  are plotted in Fig. 1. 

(2 .2)  

(2 .3)  

In addition, we assume that the system relaxation time is well represented by the 
classical Arrhenius expression 

e(x) = Ae BI~, (2.4) 

where A is a (constant) collision frequency, and B is the apparent barrier height of the 
transition state. Even though the energy landscape of the system will generally con- 
tain several different barriers, only the highest will be effective in the long-time limit 
when all the faster relaxations have died out, i.e. close to equilibrium. This assump- 
tion is consistent with the derivation of eq. (1.5). Simulations [15] on the travelling 
salesman problem indicate that such an Arrhenius-type law is a good description of 
the relaxation behaviour. 

Introducing these assumptions into the optimal rate annealing schedule eq. (1.5) 
yields 

: + ?/2) , 
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Fig. 1. Dimensionless heat capacity C/N and dimensionless energy E/(2JN) as 
functions of the similarly dimensionless system temperature z = T/(2J) for the two- 
state model (see eqs. (2.1)-(2.3)). 

where v ~ is a constant. This is the differential equation defining the optimal tem- 
perature path z(t) for a two-state model with an Arrhenius-type relaxation. It can, 

at least in principle, be solved analytically before any annealing begins and thus re- 
places the much more time-consuming procedure of collecting statistical information 
along the way [7]. The 'price' for this faster procedure clearly is less generality and 
knowledge about the system required in advance. 

Equation (2.5) has closed form solutions only for half-integer values of B, i.e. for 
B = 0.5, 1.0, 1.5, etc. For example, for B = 1.5 we find 

o,, 

where we write z0 = z(t = 0). Equation (2.6) specifies the annealing path z(t) 
implicitly. For'non-half-integer values of B eq. (2.5) must be solved numerically, but 
only once, before the start of annealing. 
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2.3 Compar i son  wi th  previous  s imula ted  anneal ing  s tudies  

It is not surprising that the energy and heat capacity for the initial combinatorial 
optimization problems analyzed [4, 7, 9] are in good agreement with eqs. (2.2) and 
(2.3), for an appropriate choice of J,  including a maximum in C at x = 0.42. However, 
excellent agreement of the solution of eq. (2.5) is also found with the dynamics of the 
optimal annealing schedule [4] when the barrier height B = 1.2 is used. This B value 
is somewhat less than the rigorously derived [16] barrier height of 2 for in, 2] necklaces. 
Since B is an averaged quantity, it also contains paths with no barrier and thus must 
be less than the combinatorial value. 

We find that the much more complicated problem of seismic inversion [7] turns out 
to be qualitatively approximated by a superposition of just two autonomous two-state 
models, which reproduces the relative positions and values of the two maxima in the 
heat capacity as well as its approach to zero. This agreement is probably achieved 
because the two-way travel times and the reflection coefficients are independent quan- 
tities. Unfortunately, the original raw data from ref. [7] are no longer available and 
hence we cannot present a more quantitative comparison. 

When C and e are independent ofT, eq. (1.5) easily integrates to the simple ad hoc 
annealing schedule eq. (1.2). However, the only schedule for which it has rigorously 
been proven [17] that the procedure will with certainty find the ground state is the 
extremely slow eq. (1.4), with the constant a equal to the largest barrier height. It is 
interesting to note that this schedule is the solution of the differential equation 

d.~z 
_ -  

dt 

which bears a close resemblance to the optimal eq. (2.5), except that the Geman- 
Geman barrier height is one half unit less than Arrhenius's, 

1 
a = B -  (2 .8 )  

In other words, the optimal dynamic annealing schedule approaches the logarithmic 
schedule for sufficiently low temperatures (relative to the barrier heights). Thus it will 
also with certainty eventually find the true solution without spending as much time at 
higher energies as eq. (1.4). This is nicely borne out by Ruppeiner's very carefully and 
slowly annealed random graphs [18], where the optimal cooling schedule at constant 
thermodynamic speed is very accurately fit by a Geman-Geman schedule. One should 
keep in mind that energies as defined in Ruppeiner's studies [18] are twice as large 
as our energies, eq. (2.1). We find that a barrier height of B = 0.86 very accurately 
reproduces the data and fit in his Fig. 4. In contrast, Salamon et al.'s comparison 
among several schedules [4] has a much shorter time horizon and thus shows constant 
thermodynamic speed annealing superior to the Geman-Geman schedule on that time 

scale. 
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At low temperatures (corresponding to long times), when exp(1/z) >> 1, the 
optimal path eq. (2.5) may be integrated to yield 

: 

where g is some constant. Next note that the ground-state energy of the two-state 
model is Eg = - N J  so that  by eq. (2.2) 

2NJ 
E(z)  - Eg - 1 + exp(1/z) (2.10) 

and hence [1 ] 
- ;- + t = h, (2.11) 

where h is another constant. 
Our simple model does not contain any statistical variance, so any power n of 

eq. (2.11) is also valid. In the long-time limit, where one can neglect 1/g in eq. (2.11), 
this equation becomes identical to eq. (13) in the study of Sibani et al. [19], 

( ( E  - E , ) " >  (1 + = c o n s t .  (2 .12 )  

which is a consequence of their scaling ansatz for tree structures, and to which they 
also apply the long-time limit before actually using it to extrapolate to the ground 
state. However, in their ansatz a is simply a parameter, 0 < c~ < 1, whereas our 
two-state model relates it to the barrier height of the system: 

1 1 1 
a = S----~ or B = -a + ~ .  (2.13) 

Thus any a found by the method of Sibani et al. can easily be translated into an 
apparent barrier height. The best fit to the traveling salesman problem they consider 
is a = 0.13 corresponding to B = 8.2 which, considering the complexity of the 
problem, is a large but reasonable barrier height. Since in general there is no lower 
bound on B (except zero, of course), our model does not restrict c~ to be less than 

one. 
When contrasted with the constant thermodynamic speed schedule of the com- 

parative study by Salamon eZ at  [4], our two-state model with a barrier height of 
B = 1.20 provides a very accurate fit of the annealing schedule as seen in Fig. 2. 
Our model's reproduction of l~uppeiner's much slower and more accurate annealing 
of random graphs [18] is even more accurate and is presented in Fig. 3. The empirical 
heat capacities for random graphs shown in Fig. 4 have some scatter. However, it 
should be pointed out that the theoretical curve (calculated from eq. (2.3)) does not 
contain any free parameters. Furthermore, the numerical study is based on an en- 
semble of only 500 copies, with limited data points at medium to high temperatures. 



B. Andresen and J .M.  Gordon 

Hence, the two-state model yields a good ~epresentation of the empirical data and 
is very cost-effective. Readers with a background in glasses might want to interpret 
the low-temperature part of the empirical data in Fig. 4 as linear in accordance with 
refs. [13, 14]. Such an interpretation would indicate that the constant level separation 
J in the current model, eqs. (2.1)-(2.3), is inadequate and should be replaced by 
a continuous distribution. However, within the accuracy of the empirical data, the 
theoretical curve of Fig. 4, based on the simple assumption of constant J,  provides 
the best overall fit without any fitting parameters. 

Numerically differentiating Ruppeiner's constant thermodynamic speed annealing 
schedule, one may calculate the apparent relaxation time of the system. Fig. 5 shows 
an Arrhenius plot of In ~ vs. 1/z. A straight line then indicates a constant barrier 
height. This is approximately the case, and there seems to be no need for additional 
barrier heights. The observed barrier height of B = 1.2 is, again considering the 
numerical scatter, relatively close to the barrier height of 0.86 that was found to 
afford a best fit to the annealing schedule and the heat capacities. 

3 Conclusions 

The type of thermal model and mathematical analysis used in Section 2 to derive 
the cooling strategy which minimizes entropy production for a process that is con- 
strained to proceed in a fixed time has been used successfully for determination of 
optimal heating and cooling strategies for real physical heat transfer problems [20, 21]. 
In simulated annealing problems one exploits the formal analogy between complex 
mathematical combinatorial problems and statistical mechanics to cast the problem 
in terms of thermodynamic variables such as temperature, energy, and heat capacity. 
For systems for which a concrete statistical mechanical model can be formulated, our 
simple thermodynamic model then permits determination of an analylic optimal an- 
nealing schedule. Lacking information on the detailed distribution of energy levels, 
this model cannot be expected to predict all the fundamental properties of all com- 
plicated systems such as real glasses and their spin glass models. But it has proven to 
yield a substantial computational saving for a number of mathematical optimization 
problems that have been successfully treated by simulated annealing. 

It might be argued that, even though one has good physical reason to adopt a 
particular model, its parameters (J  and B in the examples in Section 2) can only 
be determined a posteriori. This is only partly true, because the physical model of a 
particular optimization problem usually carries with it a good indication of the values 
of these parameters, or at least their bounds. Since the simple two-state model is used 
exclusively to determine the annealing schedule, and is not used in the annealing itself, 
the parameters are usually not critical, and one or two trim runs will quickly provide 
acceptable values. 
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Fig. 2. Optimal annealing schedule z(t) for graph partitioning used by Salamon 
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This procedure is not proposed as a replacement for the far more general, powerful 
algorithm known as constant thermodynamic speed annealing which in principle is 
applicable to any problem, even when simple models for internal system structure 
cannot be devised. Rather, when such simple models are possible - -  as appears to 
be the case for a number of central problems in simulated annealing analyzed to date 

the value of the analytic optimal cooling strategy is a substantial reduction in 
computer time, because the cooling strategy algorithm does not have to constantly 
update itself via evaluation of the heat capacity and relaxation time as they are 
changing along the annealing process. Our model thus removes a great deal of the 
complexity from the simulated annealing procedure. 

For simulated annealing problems in graph partitioning, seismic inversion, and 
spin glasses, for which the simple two-state model appears to be appropriate, we find 
that both stationary and dynamic properties for the optimal solutions, previously 
arrived at via lengthy numerical simulations, can be predicted accurately with our 
approach. This includes analytic determination of the optimal cooling strategy itself. 

Our predictions are not exact, because the combinatorial problems themselves 
may be very similar although not identical to the one-dimensional Ising model. For 
example, for the graph partitioning [4,7,9] the necklaces considered have either one or 
three nearest neighbours; the average is two as for the one-dimensional Ising model. 
Nonetheless our analytic predictions are in excellent agreement with prior numerical 
simulation results which would indicate that the basic physics of the model has been 
captured. 

The approach presented here could be of general value in simulated annealing prob- 
lems when some type of relatively simple statistical mechanical model can be crafted 
for a macroscopically complex system. Optimal cooling strategies can be calculated 
analytically (although one often must resort to a numerical solution), and stationary 
and dynamic properties of system energy and heat capacity can be evaluated. 
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