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Abstract-The cycle model of a heat-engine-driven heat pump is used to study the performance of an 
absorption heat pump affected by heat resistances. The coefficient of performance of the absorption heat 
pump is adopted to be the objective function for optimization. The optimal regions of the coefficient of 
performance and the specific heating load are determined. The optimal relations between the heat transfer 
areas of the four heat exchangers involved and the coefficient of performance, or the specific heating load 
of an absorption heat pump, are obtained. Problems concerning the optimal design of an absorption heat 
pump are also discussed. 

1. INTRODUCTION 

Many industrial processes reject heat to the surroundings at a temperature high enough above 
ambient temperature and in sufficient quantities to make heat recovery economically attractive. 
Considering that the most efficient modern steam power plants are operating at only 40% efficiency, 
the amount of waste heat rejected to the ambient could easily amount to 69% or more of the total 
energy consumed in many industrial processes. Conversely, recovered waste heat can directly 
reduce the energy cost per unit of industrial product and thermal pollution of the atmosphere and 
water can also be produced as a by-product of waste heat recovery; this has resulted in the advent 
of various novel waste heat recovery devices. 

Among the different systems currently adopted for the recovery of industrial waste heat, 
absorption heat pumps are considered to be the most competitive [l]. In recent years the practical 
exploitation of absorption heat pumps has appeared in Western Europe, Japan and America, as 
well as other countries; this has encouraged the theoretical investigation of absorption heat pumps 
[Z-6]. 

The main purpose of this paper is to use the theory of finite time thermodynamics to analyze 
the effect of thermal resistances on the performance of an absorption heat pump system. This 
includes optimization of the primary performance parameters of the system, such as the coefficient 
of performance, specific heating load and heat transfer areas of heat exchangers. 

2. AN ABSORPTION HEAT PUMP SYSTEM 

The primary components of an absorption heat pump are a generator, an absorber, a condenser 
and an evaporator [3,4,7], as shown in Fig. 1. Here q,, and q, are, respectively, the rates of heat 
transfer from the heat source at a high temperature , T,, to the generator and from the heat sink 
(ambient) at a low temperature, T, , to the evaporator; while qa and qc are, respectively, the rates 
of heat transfer from the absorber and the condenser to the heated space at an intermediate 
temperature, T,. The heating load, qp, of an absorption heat pump is thus the sum of these: 
qr, = q:, + qc. Work required for mechanical pumping within the system is negligible relative to the 
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Fig. 1. An absorption heat pump system. 

energy input to the generator and therefore is often neglected for the purpose of analysis [2,3]. 
According to the first law of thermodynamics one has 

qh+ql=%+%* (1) 

In practical absorption heat pumps there exist many sources of irreversibility, such as finite-rate 
heat transfer, heat leakage, friction, dissipation in the working fluid and so on. In order to obtain 
some significant analytic solutions of primary performance parameters, we only consider the effect 
of heat resistances on the performance of the absorption heat pump. In such a case an absorption 
heat pump may be treated as a combined cycle in which an endoreversible heat engine operating 
between the heat reservoirs at temperatures Th and T, drives an endoreversible heat pump operating 
between the heat reservoirs at temperatures T,, and T, , as shown in Fig. 2, where T, , T2, T3 and 
T4 are, respectively, the temperatures of the working fluid in the generator, absorber, condenser, 
and evaporator and p is the power output of the heat engine. 

According to the usual definition of the coefficient of performance + of an absorption heat pump 
[l, 2,5] we have 

where q =p/qh is the efficiency of the heat engine operating between the heat reservoirs at 
temperatures Th and Tp and C) = qJp is the coefficient of performance of the heat pump operating 
between the heat reservoirs at temperatures T, and Tl . 

“Al -L 
Generator T, 

P 

Fig. 2. The equivalent cycle model of an endoreversible absorption heat pump. 
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3. THE OPTIMAL COEFFICIENT OF PERFORMANCE 

When heat transfer obeys a linear law [8-121, one has 

qh = U,A,(Th - T, >T (3) 

qa = &AU’, - T,), (4) 

qc = u,J,(T, - T,), (4) 

41 = UJ,(T, - Td), (6) 

where A,, A,, A, and A, are, respectively, the heat transfer areas of the generator, absorber, 
condenser and evaporator; U, and U, are, respectively, the heat transfer coefficients of the generator 
and evaporator and U,, is the common heat transfer coefficient of the absorber and condenser. The 
latter is a reasonable assumption because the working fluid in the absorber and the condenser 
exchanges heat with the same heat reservoir at temperature T,, 

The total heat transfer areas of the heat engine and heat pumps are thus, respectively, 

Ah=Ag+A, (7) 

and 

A,=A,+A,, (8) 

making the total heat transfer area of the system 

A =Ah+Ap=Ag+Aa+Ac+Ae. (9) 

We can prove from equations (3), (4) and (7) that the optimal distribution of heat transfer areas 
A, and A, is [13, 141 

44 = ,bJaclug~ (10) 
Then the efficiency of the heat engine operating between the heat reservoirs at temperature Th and 
T, is given by [13, 141 

‘l = 1 - T,,/[T, - qh/(UhAh)l (11) 

for a specified heat input rate qh 
uh = u, um&@ + a)‘. 

and a given total heat transfer area A,, where 

Similarly, we can also prove from equations (5), (6) and (8) that when the heat transfer areas 
A, and A, are chosen such that 

AlA, = dm, (12) 

then the coefficient of performance of the heat pump operating between the heat reservoirs at 
temperatures T, and T, is optimal and given by 

Tp + qcl(upAp) 
’ = Tp - T, + dWpAp) (13) 

for a specified qc and a given total heat transfer area A,, where Up = U,, U,/(& + A)‘. 
Substituting equations (1 I) and (13) into equation (2) and using equation (9) and the following 

energy conservation relation: 

41= 4CU - l/4) = %I(1 - liti)? (14) 

we obtain an expression for the coefficient of performance for an endoreversible absorption heat 
pump: 

*= TP TP 1 TP 
Th - qp T, - qp 

1 - I/$’ (15) 

&$(A -AP) &+(A - Ap) 
Tp - T, + qpn 

P P 

Starting from equation (15), we can prove that for a specified heating load, qp , of an absorption 
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heat pump and a given total heat transfer area, A, of the four heat exchangers in the system, the 
coefficient of performance of the entire system attains its maximum when the combined heat 
transfer area of the heat pump, A,, is determined by 

/, 
P 

= ATh - Tp - tl + W - lN-W,lCI) 
T,,-Tp+(Tp- T,)/C ’ (16) 

where C = ,/( V,,/U,), and II = qp/A is the specific heating load [ 151 of an absorption heat pump. 
It represents the heating load per unit total heat transfer area. 

Substituting equation (16) into equation (15), we obtain the optimal coefficient of performance 
of an endoreversible absorption heat pump: 

9 
QJ,(T,- TIM +(C- l)[l +W - lIIT,IJ 

= U,T,(T, - T,)$ + [T, + (C - l)T, + C’($ - 1)TJl-I (17) 

for a given specific heating load II. Equation (17) is the same as the general optimum relation [16] 
derived from the cycle model of an endoreversible three-heat-source heat pump. So far we have 
proven that the optimal performance of an endoreversible absorption heat pump may be analyzed 
by an equivalent combined cycle, shown in Fig. 2. However, it is more important that, by using 
an equivalent combined cycle to analyze the performance of an endoreversible absorption heat 
pump, we can determine more exactly the optimal regions of the coefficient of performance and 
specific heating load and give some optimum rules of other primary performance parameters. 

4. OPTIMAL REGIONS OF + AND I-I 

Equation (17) shows that the optimal coefficient of performance of an endoreversible absorption 
heat pump is a monotonically decreasing function of the specific heating load, as shown in Fig. 
3. When an absorption heat pump attains its reversible coefficient of performance [l, 171, 

G - T, Tp *r=--, _T’ 

h P I 
(18) 

its specific heating loss is equal to zero. This indicates that the reversible coefficient of performance 
of an absorption heat pump is of very limited practical value, because real absorption heat pumps 
are always required to have a certain heating load. 

When its specific heating load attains its maximum, 

k~ax = ‘%(Th - T,), (19) 

the coefficient of performance is equal to 1, i.e. the heat delivered to the heated space equals the 
heat drawn from the source. Because Th > Tp, one can instead use the heat source at temperature 

l-l 

1 win YJ UI ,.” 

Fig. 3. The specific heating load fl vs the coefficient of performance I) for an endoreversible absorption 
heat pump. Direct head conduction from the heat source to the heated space is marked as ll,, . The more 

efficient branch of operation of the driving heat engine is shaded. 
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T,, to supply heat directly to the heated space at temperature TP. It is easily accomplished to make 
the heat transfer coefficient and the area between the heat source and the heated space, respectively, 
be equal to U, and A. Then the rate of heat transfer per unit heat transfer area IId in the process 
of direct conduction of heat is 

II, = u,(T, - T,) > I-L,,, (20) 

as shown in Fig. 3. This shows clearly that absorption heat pumps operating at maximum specific 
heating load are not as effective as direct conduction of heat, so absorption heat pumps should 
not be operated in the neighbourhood of II/ = 1. Hence, both the coefficient of performance and 
the specific heating load of an absorption heat pump must be considered together. 

From equations (1 l), (2), (9), (16) and (17) we obtain the relation between the efficiency of the 
heat engine and the coefficient of performance of the system: 

(ti - 1N + Cl) 
YI’ (21) 

where C, = (T,, - T,,)[C’/(T, - T,) - (C - l)‘/(T, - T,)] and C, = T,,[C2/(TP - T,) - C -- l)*/(T,, - 
T,)] are constants. It is well known that for an endoreversible heat engine operating between two 
heat reservoirs at temperatures T,, and TP, its efficiency at maximum power output [18, 191, pmar, 
or maximum specific power output [20] is given by 

rlCA=l-Jm. (22) 

When P < pmax y the efficiency q of the endoreversible heat engine may attain two different values 
for a given p, one being smaller than qc- and the other larger than qc-, as shown in Fig. 4. Only 
if the efficiency of the endoreversible heat engine is situated in the shaded region between the 
efficiency Q-- and the efficiency qreV of a reversible heat engine, 

?re”‘? ~~CAT (23) 

can the endoreversible heat engine be operated optimally. 
The condition that absorption heat pumps are required to operate in the optimal region of the 

coefficient of performance $ required the efficiency of the endoreversible heat engine in the system 
satisfying equation (23). Thus solving equations (21) and (23), we find that the optimal region of 
the coefficient of performance for an endoreversible absorption heat pump is 

*a 1 +C, +qcA[CTp/(Tp- T,)-l-C21 

1 + c, + I]CA[(C - l)T,,/(T,, - T,) - c21= ‘m* 
(24) 

Fig. 4. The power output p vs the efficiency q for an endoreversible heat engine. The shaded region is 
the more efficient branch of operation for a given power production. 
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Substituting equation (24) into equation (17), we can determine the corresponding optimal region 
of the specific heating load: 

(25) 

This area is shown shaded in Fig. 3. 
Equations (24) and (25) are two important conclusions for an endoreversible absorption heat 

pump, with $,,, and II,,, being very useful parameters. Obviously, if the coefficient of performance 
$ < $,,, and the specific heating load II > II,,,, the efficiency of the endoreversible heat engine in 
the system is smaller than VcA. As mentioned above, the endoreversible heat engine with an 
efficiency q < VcA is not situated in the optimal working region so that the whole system cannot 
be operated optimally, i.e. most efficiently. It is thus clear that I,+,,, determines a lower bound for 
the optimal coefficient of performance and II, determines an upper bound for the specific heating 
load. In the symmetric case, when the heat transfer coefficients vi, = UP, $,,, and II,,, can be simply 
written as 

Ti, - T, 
ICI*=. Tp 

h Tp - T, JT,ir, 
and 

k, = uh(JThT, - T,,). 

Comparing equations (26) and (27) with equations (18) and 

*in = 44 1 - W-p 
l-T,IJT,T, 

and 

n, = I-I max < Km 
1+JThiTp 2’ 

(19), we obtain 

(27) 

(28) 

(29) 

respectively. From equation (29) we can easily generate the curve of II,/&,,,, vs T,/T,, as 
shown in Fig. 5. This shows clearly that the rational specific heating load of an endoreversible 
absorption heat pump should be smaller than half of the maximum specific heating load, 
because then the efficiency of the endoreversible heat engine inside the system will be greater than 
%A. 

The above results are significant for the optimal design and operation of real absorption heat 
pumps. 

Fig. 5. The ratio of the specific heating loads lI,/l&,_ vs the ratio of the reservoir temperatures T,,/T, 
for an endoreversible absorption heat pump with U,, = UP. 
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5. OPTIMAL DISTRIBUTION OF HEAT EXCHANGER AREAS 

Solving equations (7)-(10), (12) and (16) we find the optimal heat transfer areas: 

A g _ (2-p - T,W + [l + w - lm-w4~) -- 
A Th-- T,+(T,- T,)/C ’ 
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(30) 

(T, - T,)lC + [1 + CW - lN-‘W,,~> 
T,,- T,+(T,- T,)/C ’ 

(31) 

Ti, - Tp - [I + CW - lWl(~,ti) 
T,, - Tp + ( Tp - T, )/C ’ 

(32) 

T,, - T, + (T, - T,)/C (33) 

Equations (30x33) result in a very simple relation for the optimal distribution of heat transfer 
areas of the four heat exchangers: 

,&A, + &A, = ,/%(A + A,). (34) 

Solving equation (17) for II and substituting the result into equations (30x33) we obtain the 
optimal ratios of heat exchanger areas to total heat transfer area in terms of the coefficient of 
performance 1+9 : 

ICIT, + (1 - C)(l - NT, 
u, G’-, -I- C’$(+ - l)T,,+ (1 - C)‘(l - II/)T,’ 

It/T, + (1 - C)(l - $)T, 
Ua, ll/T, + C*$(+ - l)T,, + (1 - C)‘(l - $)T, 

(ICI - l)[CvQT, + (1 - C)T,l 
Ua,, +T, + C*+($ - l)T,, + (1 - C)‘(l - +)T,’ 

A e= ($ - I)[C$T, + (1 - W-J 
A u, $T, + C’ti(+ - l)T, + (1 - C)*(l - ll/)T,’ 

(35) 

(36) 

(37) 

(38) 

These relationships are illustrated in Fig. 6(a). It is seen clearly that for a given total heat transfer 
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Fig. 6. The curves of the ratios of the heat transfer areas A,/A (i = g, a, c, e) vs (a) the coefficient of 
performance $ and (b) the ratio of specific heating load to the heat transfer coefficient, II/U,, for equal 
heat transfer coefficients, US = U,, = U,. The non-optimal regions are shown in dashed lines. The curves 

have been drawn for the temperatures T,, = 130°C T, = 50°C and T, = 20°C. 
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area, A, the heat transfer areas associated with the heat pump, A, and A, of the condenser and 
the evaporator, should be increased as the coefficient of performance I,G increases, while the heat 
transfer areas associated with the heat engine, A, and A, of the generator and absorber, should 
be correspondingly decreased. The reason clearly is that, as the coefficient of performance of the 
system increases, a larger fraction of the delivered heat qp comes from the heat pump rather than 
from the inefficiency of the heat engine, thus requiring larger areas of transfer. 

Using equations (17) and (30X33), the reader may obtain the optimal relations between A,/A 
and II. The curves of AI/A vs II/U, are presented in Fig. 6(b). It is interesting to note that for a 
given A, the relations between Ai and II/U, are linear. 

According to equation (24) and Fig. 6, we find the optimal regions of Ai: 

A, G (A,), 3 (39) 

A, G (A,),, (40) 

A, 2 (A,),, (41) 

A, 2 (A,),, (42) 

where (Ai)m are, respectively, the optimal heat transfer areas of the four heat exchangers when 
t,G = $,,,. The points (Ai)m are marked on Fig. 6 with an ‘m’, and the non-optimal regions shown 
in dashed lines. Substituting equation (24) into equations (35)438), the reader may obtain the 
expressions of (Ai),. When U,, = Vi, = Up, they may be simply written as 

(43) 

(44) 

(45) 

(46) 

6. CONCLUSION 

In the design of absorption heat pump systems a detailed knowledge of the primary performance 
parameters, such as the coefficient of performance, the specific heating load and the heat transfer 
areas of the heat exchangers, is highly desirable. The results derived from the cycle model of a 
heat-engine-driven heat pump can determine the optimal working regions of the primary 
performance parameters of an endoreversible absorption heat pump. They can guide the evaluation 
of existing real absorption heat pumps and influence the design of future absorption heat pumps. 
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