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Abstract—We consider the problem of optimal parametric control for a single oscillator or an
ensemble of oscillators due to a change in one of the coefficients of the system of equations
characterizing them. We obtain solutions for the problem of finding the maximal change in the
energy of oscillations for a given time.
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1. INTRODUCTION

The problem of controlling the oscillations of a pendulum for the case when the control action
is a force that influences the acceleration or the speed of the pendulum additively differs little from
the motion control problem studied already by A.A. Feldbaum. Meanwhile, one can often observe
how the swings are accelerating or braking by changing the distance from the point of suspension
to the center of gravity of the pendulum. Formally, this corresponds to parametric control, when
the control action is one of the coefficients in the differential equation. Such a problem has been
considered in [1] with regard to the linearized pendulum. That work obtained a simple but inexact
solution. Below we present a solution to the problem of parametric control of a single oscillator
and shows the fundamental difference that arises when solving a similar problem for an ensemble
of oscillators.

An ensemble of oscillators is a system of synchronized linearized pendulums that have the
same frequency but different phases of oscillations. The oscillation energy of each oscillator in the
ensemble is mechanical, and in this respect it is similar to a single oscillator, but the oscillation
phases of each oscillator are different and the system can be controlled only at the macro level, by
affecting the environmental parameters that determine the common oscillation frequency for the
ensemble. In this respect, an ensemble of oscillators is similar to a macrosystem, and one of the
variables characterizing it is von Neumann entropy (see [2]).

One physical system adequate to the considered model is a crystalline body. The control is laser
radiation [2]. The change in the internal energy of the system corresponds to its heating or cooling.
Moreover, unlike such classical macrosystems as an ideal gas, an ensemble of oscillators can be
heated or cooled in finite time without changing entropy (adiabatically). The works [3, 4] show
that the duration of adiabatic cooling is limited from below and find this lower bound. Below we
show that it is possible to reduce the energy of oscillations of an ensemble adiabatically only up to
a certain limit, even over an arbitrarily long time. In the same problem for a single oscillator, the
oscillation energy can be made arbitrarily small. In [5], the performance problem for an ensemble
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of oscillators is considered as an illustration of the capabilities of the method of substitution of
phase variables.

2. A SINGLE OSCILLATOR

Let p be the speed and q be the displacement of an ideal linearized pendulum. Its motion is
characterized by equations

q̇ = p, ṗ = −uq, p(0) = p0, q(0) = q0, (2.1)

where u � 0 is a parameter depending on the mass of the pendulum and the length of its suspension
(the distance from the point of suspension to the center of gravity). Physically, it is equal to the
square of the frequency of its natural oscillations. The suspension length can be changed by
changing the position of the center of gravity. Thus, u(t) is the control bounded by the condition

0 < u1 � u � u2. (2.2)

The parametric control problem for an oscillator has been considered in [1, 5] as a problem where
one wants to maximize performance.

Below we show that the problem of minimizing transition time to a given energy level and min-
imizing (maximizing) the energy increment over a given time interval are not equivalent, since the
dependence of the maximum achievable energy on the process duration is not a strictly monotonic
function.

The total energy of the oscillator is

E(t) = p2 + uq2. (2.3)

For any constant value u, the rate of change of E is equal to zero by virtue of Eqs. (2.1), i.e.,
E(t) = const.

At the initial moment of time

E0 = p20 + u0q
2
0.

At the final moment τ ,

E = E(τ) = p2(τ) + u(τ)q2(τ) = p2 + u(τ)q2. (2.4)

Since u(τ) can be changed abruptly, depending on the formulation the optimality criterion in
the problem of the maximum energy change will take the form

E = p2 + u2q
2 −→ max (2.5)

or

E = p2 + u1q
2 −→ min . (2.6)

To be definite, in what follows we consider the problem with criterion (2.6), and without loss of
generality we let u1 = 1, so 1 � u � u2/u1. Energy E can be rewritten in integral form as

E = E0 +

τ∫

0

d

dt
(p2 + q2)dt = E0 − 2

τ∫

0

pq(u− 1)dt −→ min . (2.7)
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From this expression, the work [1] makes an erroneous conclusion that for even (2 and 4) quadrants
of the plane p, q, when the product of these variables is negative, it is necessary that u∗ = 1, and
for odd quadrants (1 and 3), where pq > 0, one should choose u∗ = u2

u1
. Relations (2.1) between

control and state variables were not taken into account.

Before solving the problem (2.7), (2.1), we simplify it by passing to new variables. Since the
right-hand part of Eq. (2.1) can change sign, we introduce a new variable z(p, q) so that its speed
along the system trajectories does not change sign.

Phase trajectories of the oscillator for any admissible values of u rotate counterclockwise, so we
select as z the expression

z = arctan

(
−p
q

)
, z0 = arctan

(
−p0
q0

)
. (2.8)

The rate of change of this variable is greater than or equal to one:

ż =
1

1 + p2

q2

uq2 + p2

q2
=
u+ tan2 z

1 + tan2 z
. (2.9)

We next replace the energy E with a variable monotonically associated with it

e = ln(p2 + q2),

so that

ė = 2
pq(1− u)

p2 + q2
= 2

tan z(u− 1)

1 + tan2 z
, e0 = lnE0. (2.10)

Note that the right-hand side of Eq. (2.9) is positive, and the variable e does not appear in the
right-hand side of (2.9), (2.10), i.e., Eq. (2.10) in the terminology of [6] is Lyapunov and can be
rewritten in integral form, as it is done below.

We substitute

dt =
(1 + tan2 z)dz

tan2 z + u

and rewrite the problem of braking the oscillator in the form

e(τ) = e(z) = e0 + 2

z∫

z0

tan z(u− 1)dz

u+ tan2 z
−→ min

u(z),z
(2.11)

under constraint

z∫

z0

(1 + tan2 z)dz

tan2 z + u
= τ. (2.12)

The solution for this problem is a dependence u∗(z) and a value z∗. Note that z > 0 for even and
z < 0 for odd quadrants of the plane p, q, therefore, if we ignore condition (2.12) the solution from [1]
is correct. It is closer to the correct solution of the problem when τ is larger, i.e., constraint (2.12)
is less significant.

For the resulting problem (2.11), (2.12) with one integral condition there exists a nonzero vector λ
such that the Lagrange function L on the optimal solution is minimal for u. For a non-degenerate
solution (λ0 �= 0) L takes the form

L =
tan z(u− 1)

(u+ tan2 z)
+ λ

1 + tan2 z

u+ tan2 z
. (2.13)
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Fig. 1. Change of the oscillator energy along the optimal trajectory on the plane p2, q2.

The derivative of L with respect to u is

∂L

∂u
=

1 + tan2 z

(u+ tan2 z)2
(tan z − λ),

and its sign coincides with the sign of the second factor. Optimal control is maximal (u∗ = u2
u1
)

when (tan z − λ) < 0. For (tan z − λ) > 0 it is minimal (u∗ = 1).

The factor λ is equal to −de∗(τ)
dτ (see [7]), where e∗(τ) is the minimum energy value of the

oscillations that can be achieved in time τ . Since the value of e∗ decreases with an increase in the
admissible duration, we have λ > 0. The switching line is a straight line with slope −λ. It expands
the sectors where control is maximized: these are not only the first and third quadrants, where
tan z < 0, but also parts of the second and fourth where tan z < λ.

The second switching line is the Y-axis, on which tan z has a discontinuity.

For z = z, the control u∗ abruptly becomes equal to one.

It is convenient to depict the optimal process on a plane with coordinates p2 and q2, since the
direct control values on this plane correspond to straight lines with slopes −1 and −u2/u1. If the
initial state on the p, q plane lies to the right of the Y-axis and above the switching line p = −λq
or to the left of this axis and below the switching line, then the optimal control at time t = 0
takes value umax = u2/u1, the trajectory intersects the X-axis (p = 0), and the system moves to the
switching line p2 = λ2q2 (see Fig. 1), after which the control takes the value u∗ = 1 and remains
unchanged until the control switches on the Y-axis (q = 0).

If the initial conditions are such that p0, q0 are to the left of the Y-axis and above the switching
line or to the right of the Y-axis and below this line, then u∗ = 1 and the system first moves towards
the Y-axis, and then it starts moving with a slope −umax = −u2/u1 up to the switching line. In
addition, in each ith cycle that begins and ends on the Y-axis, the degree of attenuation

ϕ =
ei−1

ei
=
λ2 + umax

λ2 + 1
> 1 (2.14)

does not depend on i.
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The duration of such a cycle Δτi also depends on λ and does not depend on i. In the absence
of restrictions on the duration of the process, the energy can be made arbitrarily small.

Δ = Δτi =
π

2

(
1 +

1√
umax

)
+

1√
umax

arctan
λ√
umax

− arctanλ. (2.15)

The ratio ϕ/Δ is maximized by the value of λ satisfying

arctan λ− 1√
umax

arctan
λ√
umax

=
π

2

(
1 +

1√
umax

)
− 1

2λ
. (2.16)

The left-hand side of this equation is negative, and the right-hand side is positive with λ < 0, so it
has only a positive root. Since the left-hand side of the equation grows with λ and tends to the value
π
2

(
1− 1√

umax

)
, and the right-hand side increases monotonously up to a larger value π

2

(
1 + 1√

umax

)
,

the solution is unique.

3. ENSEMBLE OF OSCILLATORS

Consider the problem of minimizing the oscillation energy in a given time τ for an ensemble of
oscillators.

Suppose that the ith oscillator is characterized by Eqs. (2.1) that relate its displacement qi and
impulse pi with each other and with the common frequency of the ensemble ω,

q̇i = pi, ṗi = −ω2qi, i = 1, . . . , N. (3.1)

With a choice of units we can set the oscillator mass equal to m = 1.

Macro-variables characterizing the ensemble [3]:

—energy

E(t) =
1

2

N∑
i=1

(p2i + ω2q2i ), (3.2)

—Lagrangian

L(t) =
1

2

N∑
i=1

(p2i − ω2q2i ), (3.3)

—correlation

C(t) = ω(t)
N∑
i=1

piqi. (3.4)

Denoting ω̇/ω by u, we can write a system characterizing the dynamics of macro variables [2] as

Ė = u(E − L), E(0) = E0,

L̇ = −u(E − L)− 2ωC, L(0) = L0,

Ċ = 2ωL− uC, C(0) = C0,

ω̇ = uω, ω1 � ω � ω2, ω(0) = ω0.

(3.5)

AUTOMATION AND REMOTE CONTROL Vol. 79 No. 12 2018



2108 ANDRESEN et al.

Since by virtue of Eqs. (3.1)

d

dt
(piqj − pjqi) = −ω2qiqj + pipj + ω2qjpi − pjpi = 0 ∀i, j,

there must be a relationship between state variables in (3.5). Indeed, it is easy to see that

X =
E2 − L2 − C2

ω2
= X0 =

E2
0 − L2

0 − C2
0

ω2
0

> 0. (3.6)

The value

X = 0.5
N∑
i=1

N∑
j=1

(piqj − pjqi)
2

does not change with time due to Eqs. (3.5); it is strictly related to the von Neumann entropy SN
of the oscillator ensemble [2] as

SN = ln

(√
X − 1

4

)
+

√
X arg sinh

( √
X

X − 1
4

)
.

The constancy of entropy suggests that the process of changing the system state due to a change
in the oscillation frequency is adiabatic.

The constancy of X implies that for t = τ

E
2
=
(
X0ω

2 + L
2
+ C

2
)
.

There are no restrictions imposed on the control u, therefore in the problem of minimizing the
final energy of the ensemble the value ω can be taken to equal ω1, and we can restate the problem
as

E =

√
ω2
1X0 + L

2
+ C

2 −→ min (3.7)

under the conditions (3.5). At the same time, E is obviously no less than ω1

√
X0.

To solve the problem, we will change the variables in such a way that the right-hand parts
of differential Eqs. (3.5) do not include unlimited control u. We denote new state variables by
z1, z2, z3:

z1 = E + L, z2 =
E − L

ω2
, z3 =

C2

ω2
� 0. (3.8)

The original variables are related to the new ones as

E = 0.5(z1 + ω2z2), L = 0.5(z1 − ω2z2), C = ω
√
z3. (3.9)

The invariant is equal to

X = X0 = z1z2 − z3. (3.10)

Thus, of the three new state variables only two are independent. The set of admissible states of
the system on the plane z1, z2 definitely lies above the hyperbola z1z2 = X0.
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The minimum possible value of the energy that can be achieved in arbitrarily long time with
parametric control, and the corresponding values of the variables are equal to

E
∗
= ω1

√
X0 = z1

∗, z2
∗ =

z1
∗

ω2
1

. (3.11)

We write Eqs. (3.5) for the new variables:

dz1
dt

=
dE

dt
+
dL

dt
= −2ωC = −2ω2√z3, z1(0) = z10, (3.12)

dz2
dt

=
1

ω2

(
dE

dt
− dL

dt

)
− 2

ω
(E − L)u = 2

C

ω
= 2

√
z3, z2(0) = z20. (3.13)

In turn, z3 = z1z2 −X0, so the system of equations for independent variables will take the form

⎧⎪⎪⎨
⎪⎪⎩

dz1
dt

= −2ω2
√
z1z2 −X0, z1(0) = z10

dz2
dt

= 2
√
z1z2 −X0, z2(0) = z20.

(3.14)

The initial state of this system is set, as well as the duration of the process. The problem is to
find ω(t) so that E is minimal.

Since

L
2
+ C

2
= ω2

1(z1z2 −X0) + 0.25(z1 − ω2
1z2)

2 = 0.25(z1 + ω2
1z2)

2 − ω2
1X0,

the optimality criterion can be written as

E = 0.5(z1 + ω2
1z2) −→ min

ωi�ω�ω2

. (3.15)

At the same time, for any constant control ω the phase trajectory on the plane z1, z2 is a straight
line because

dz1
dz2

= −ω2. (3.16)

The right-hand side of Eq. (3.13) does not depend on ω and has the same sign as dz2, so

dt =
|dz2|

2
√
z1z2 −X0

. (3.17)

Criterion (3.15) changes by virtue of Eqs. (3.14) to

Ė = 0.5(ż1 + ω2
1 ż2) = (ω2 − ω2

1)
√
z1z2 −X0. (3.18)

The derivative is

dE

dz2
= −0.5(ω2 − ω2

1) � 0. (3.19)

The problem of minimizing the final energy is transformed to the form

E0 −E =

z2∫

z20

(ω2 − ω2
1)dz2 −→ max

ω(z2),z2
(3.20)
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Fig. 2. Character of optimal processes on the plane z1z2.

under constraints (3.16) and

z2∫

z20

|dz2|
2
√
(z1(z2)z2 −X0)

= τ. (3.21)

Let υ denote the square of the oscillation frequency. The conditions of the maximum principle
for problem (3.20), (3.21) will take the form (ψ0 = 1)

H = υ − ω2
1 +

λ

2
√
z1z2 −X0

− ψυ, (3.22)

dψ

dz2
= −∂H

∂z1
= +

λz2
4(z1z2 −X0)3/2

, ψ(z2) = 0. (3.23)

Since with the growth of τ the value of ΔE
∗
= E0 − E

∗
does not decrease (see [7]),

λ = −∂ΔE
∗

∂τ
� 0. (3.24)

Due to condition (3.23), dψ
dz2

does not change sign, which means that by virtue of condition (3.24)
ψ(z2) decreases monotonically. Control υ∗(z2) = sgn(1− ψ(z2)) delivers the maximum Hamilto-
nian function H. It is minimal (equal to ω2

1) when ψ(z2) > 1, and maximal (equal to ω2
2) when

ψ(z2) < 1. Since ψ(z2) decreases monotonically, the control has at most one switching on the
interval z20 < z2 < z2.

Let the initial frequency be fixed and equal to ω0 (ω1 � ω0 � ω2). The optimal frequency for
t = 0 changes abruptly to ω1 (if ψ(z20) > 1) or to ω2 (if ψ(z20) < 1), then in any case at the end
of the process it takes the value ω2. At moment τ or, which is the same, for z2 = z2, the control
again abruptly decreases to ω2

1.

When the system moves on the phase plane z1, z2 with any fixed frequency, its energy does not
change, so it is easy to calculate the energy gain for any structure of the optimal process (Fig. 2).
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Consider two possible structures of the optimal process.

1. Process without switchings. The frequency at the starting point 0 jumps from ω0 to ω2,
the system moves with frequency ω2 during the time τ to point F0, where the frequency abruptly
decreases to ω1.

2. Process with one switching . The frequency at point 0 decreases from ω0 to ω1, the system
moves with frequency ω1 over time τr1 to the switching point R1, where it increases to ω2. Then,
with frequency ω2 the system moves to the point F1 over time τ − τr1, where the frequency abruptly
drops to ω1.

Let us compute the energy reduction for processes 1 and 2:

ΔE1 = E0 − EF0 = (ω2
0 − ω2

2)z20 + (ω2
2 − ω2

1)z21 = ω2
0z20 + ω2

2(z21 − z20)− ω2
1z21, (3.25)

ΔE2 = E0 − EF1 = (ω2
0 − ω2

1)z20 + (ω2
1 − ω2

2)z2R1 + (ω2
2 − ω2

1)z22

= ω2
0z20 + ω2

1(z2R1 − z20 − z22) + ω2
2(z22 − z2R1).

(3.26)

Process 2 is preferable if δ = (ΔE2 −ΔE1) > 0. The quantity δ is equal to

δ = ω2
1(z2R1 − z20 − z22 + z21) + ω2

2(z22 − z2R1 − z21 + z20)

= (ω2
2 − ω2

1)(z22 − z2R1 − z21 + z20).
(3.27)

This value is positive if

z22 − z2R1 > z21 − z20. (3.28)

Thus, the process where the increment in the variable z2 on the section where the frequency is equal
to ω2 is greater will be a better process. The switching process takes place in an area where the
product z1z2, and therefore also the rate of change of z2 over time, is greater than for the process
without switchings. On the other hand, the duration of this section is reduced due to the time
needed to transit to the switching point. So the switching process is optimal, and the switching
point must be selected according to the condition of maximizing ΔE.

The value z21 is determined by the condition (3.21):

z21∫

z20

dz2

2
√
(2E0 − ω2

2z2)z2 −X0

= τ, (3.29)

which, after taking the integral, leads to an equation for z21

arcsin
E0 − ω2

2z21√
E2

0 − ω2
2X0

= arcsin
E0 − ω2

2z0√
E2

0 − ω2
2X0

− 2ω2τ. (3.30)

The variables in the left-hand side of inequality (3.28) are related to each other by the condition
imposed on the duration of the process:

z2R1∫

z20

dz2

2
√
(2E0 − ω2

1z2)z2 −X0

+

z22∫

z2R1

dz2

2
√
(2E0 − ω2

2z2)z2 −X0

= τ, (3.31)

or, after taking integrals,

1

ω1

⎡
⎣arcsin E0 − ω2

1z2R1√
E2

0 − ω2
1X0

− arcsin
E0 − ω2

1z20√
E2

0 − ω2
1X0

⎤
⎦

+
1

ω2

⎡
⎣arcsin E0 − ω2

2z22√
E2

0 − ω2
2X0

− arcsin
E0 − ω2

2z2R1√
E2

0 − ω2
2X0

⎤
⎦ = 2τ.

(3.32)
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Fig. 3. Change of control parameter ω in the optimal process.

The choice of z2R1 reduces to finding the maximum difference z22 − z2R1 with condition (3.32). The
optimality conditions for this problem, obtained using the Lagrange method, after eliminating an
indefinite factor λ are of the form

F (z22, ω2) = F (z2R1, ω2)− F (z2R1, ω1), (3.33)

where

F (z, ω) =
1√

z(2E0 − ω2)−X0
.

The system (3.32), (3.33) determines optimal values of z2R1 and z22.

The optimal process of changing the control parameter ω is shown in Fig. 3.

4. CONCLUSION

We have obtained the structures of optimal parametric control processes for a single oscillator
and an ensemble of oscillators, allowing to minimize (increase) the oscillation energy over a given
time τ ; we have also obtained computational formulas for choosing the control switching moments.
For a single oscillator, the oscillation energy can be made arbitrarily small over a sufficiently long
time interval. For an ensemble of oscillators it can only be reduced to a certain limit. The reason
for this difference is that an oscillator ensemble is a macrosystem where the control changes the
oscillation frequency common to the ensemble and does not affect their individual phases. In this
regard, the capabilities of “adiabatic” control are limited.
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