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Abstract: This work proposes a structure synthesis and surface distribution algorithm in a heat exchange
system for the case when all heat capacity rates and inlet temperatures of the hot streams are constant, while
cold streams also have outlet temperatures set. The algorithm includes the possibility of changing the phase
state of the contacting streams. The synthesis is based on minimization of dissipation for a given total heat
load in the form of minimum total contact surface area, which again correlates with the cost of the heat
exchange system. The proposed algorithm can be considered to follow a thermodynamic rationale and as
development of pinch analysis.
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1 Introduction
The problem of multi-stream heat exchange system synthesis is to organize the thermal contacts between the
hot and cold streams (i. e., to choose the system structure), to distribute the heat load between the counter-
current heat exchange units, and to calculate the heat exchange coefficients (essentially heat exchanger ar-
eas), for example to minimize a certain optimality criterion while satisfying the constraints imposed. In most
cases, heat exchange systems are integratedwith a certain technological process (metallurgy, distillation pro-
cesses, etc.) [1], in which the flows entering the technological systems, as well as outgoing hot streams, must
have certain temperatures. Heat consumed by the technology is minimized due to the heat exchange.

In most papers (see [2]) the optimality criterion is techno-economic in nature, considering a total of cho-
sen weights, capital, and operating costs, while the constraints are defined by the characteristics of the syn-
thesized system. Thus, during the process ofmulti-columndistillation the technological requirements dictate
certain temperatures and heat capacity rates (specific heat of the fluid multiplied mass flow rate of the fluid,
typically measured in W/K), and the heat exchange system may include the heat exchange column units (a
boiler and a reflux condenser). The authors of the paper [3] consider the possibility of multi-stage contact
of heat streams, searching through the structures and conducting numerical optimization of parameters ac-
cording to economic criteria.

The synthesis of such a system with numerous flows in contact with each other is a complex combinato-
rial problem, usually solved numerically, in some cases using heuristic methods [4].

The use of feasibility criteria is associated with the liberty of choosing the evaluation factors of opera-
tional and capital costs depending on the cost of materials, installation, etc. Moreover, such a criterion as-
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sumes a numerical procedure and makes it impossible to use common thermodynamic principles. For sim-
plicity of calculations, we assume the heat exchange to be single-staged, i. e., each hot stream is in contact
with only one cold stream.

The book [5] used an exergy criterion, which is equivalent to exergy (useful energy) loss minimization.
This approach allowed the authors to compare several systems based on their actual exergy losses. No opti-
mization or system synthesis procedure with the chosen criterion was offered in this case.

Exergy loss is equal to the product of entropy production in the system and the absolute ambient temper-
ature. Therefore minimum entropy production (irreversibility) corresponds to minimum loss of exergy. This
fact was used in themethods of optimization thermodynamics [6–11] among others. Using thesemethods, the
problems of optimal thermodynamic system synthesis based on the minimum entropy production criterion
are solved in the present paper.

Pinch analysis is widely used in designing industrial process systems (see [12, 13], etc.). To conduct pinch
analysis, the dependencies of the temperatures of contacting streams on their enthalpy are found, and conse-
quently a zone with the closest temperatures (pinch temperatures) is determined. Further, graphs are based
on the most common qualitative considerations about the nature of contacts for temperatures above and
below the pinch.

This approach is justified by the fact that the entropy production for a given total heat exchange surface
and system structure increasesmonotonicallywith the increase of heat loadwhen the system structure is cho-
sen so that the production of entropy is minimal [8, 10, 14, 15]. Conversely, for a given heat load it decreases
monotonically with the increase of heat exchange surface. This means that for a structure with minimum
irreversibility it is possible to ensure maximum heat load for a given surface or alternatively minimum total
contact surface for a constant load, which correlates with the minimum cost of a system. Note that the mono-
tonicity is for a given system structure and transfer coefficients while theminimum contact surface area is for
a given heat load while changing the system structure and/or varying the stream distributions between the
heat exchangers.

2 Optimal heat exchange
The work [14] considers the problem of the highest achievable performance of a heat exchange system (“op-
timal” heat exchange) among streams which do not change phase. The nomenclature of temperatures Ti and
heat capacity ratesWi (heat capacity multiplied flow rate) around a given heat exchanger is shown in Fig. 1.
The hot streams are labeled +, the cold streams −. The authors found the least possible entropy production
rate σ∗ in a system with given values of input heat capacity rates and input temperatures of hot and cold
streams. Further conditions were the required heat flux density, q, for a given temperature difference in a

Figure 1: Definition of nomenclature around counter-current heat ex-
changers.
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given point and total heat flux,Q, for all temperatures from the starting point to the current point. They show
that in the case when the heat flow is proportional to the temperature difference (Newtonian kinetics), this
optimal irreversibility limit can be achieved if the ratio of absolute flow temperatures, T−/T+, stays the same
at each contact point along the heat exchanger, and if the system outlet temperatures Touti+ are the same for
all flows, while the inlet temperatures are constant (hot or cold) over time.

The conditions for optimal heat exchange impose very strict requirements on the system characteris-
tics [14]:
– each heat exchange unit must be a counter-current heat exchanger;
– the ratio of heat capacity rates of hot and cold streams in it must be equal to the ratio of the absolute

temperatures of the cold stream exiting the heat exchange unit to the hot stream inlet temperature (“tem-
perature consistency conditions”),Wi+/Wi− = Touti− /T

in
i+ .

Under these conditions, the system load is equal to the total energy required to heat all cold streams and is
determined by the equation

q̄ =∑
j
qj =∑

j
Wj−(T

out
j− − T

in
j− ). (1)

We further define the relative temperature gradient for constant outlet temperatures and heat capacity
rates of the hot streams Tout+ related to their inlet temperatures T ini+ , heat capacity ratesWi, and the total heat
exchange rate K as [14]

m = 1 − 1
K

n
∑
i=1

Wi+(lnT
in
i+ − lnT

out
+ ),

where the summation over i is over all streams and the outlet heat stream temperatures Tout+ must be the same
and, as follows from the energy balance conditions, be equal to

Tout+ =
∑ki=1 T

in
i+Wi+ − Q
∑ki=1Wi+

, (2)

where the summation only runs to k instead of the full n streams, because hot streams with initial tempera-
tures less than Tout+ are not involved in the heat exchange system [14].

The least possible entropy production rate for this system is then

σ∗ = K (1 −m)
2

m
. (3)

These relations are valid for the optimal operation of the heat exchange network, e. g., the heat capacity
ratesWi+.

Next, let us expand our universe of heat exchange possibilities and allow streams which change phase,
i. e., either condense or evaporate. If any flow changes its phase state, in addition to its heat capacity rates,
the flow (by weight) gi and the heat of vaporization (condensation) ri are constant. Then, if part of the hot
streams is condensedduringheat exchange, the heat capacity rate of the corresponding summand in (1) tends
to infinity. Let us assign the index c to the condensing stream and find the limit of

Wc(lnT
in
c − lnT

out
c ) = Wc (lnT

in
c − ln(T

in
c −

qc
Wc
))

whenWc tends to infinity. Using l’Hôpital’s rule, we find

lim
Wc→∞

Wc (lnT
in
c − ln(T

in
c −

qc
Wc
)) =

qc
T inc
=
gcrc
Tc
.

It is assumed that temperature T inc equals the condensation temperature and the heat load equals the product
of the flow rate and the hidden vaporization rate.
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Therefore, the expression formwhen condensing streams are involvedwill change to the following form:

m = 1 − 1
K
(∑
i ̸=c

Wi+(lnT
in
i+ − lnT

out
+ ) +∑

c

gcrc
Tc
) . (4)

Regardless of whether we are considering condensing streams or not, when deriving the expressions
above it was assumed that all parameters of the cold streams are chosen for a given load and total heat ex-
change rate K according to the minimum irreversibility condition. However, in many cases there is no possi-
bility of such a choice.

In a multi-stream system integrated with the workflow there are values given for heat capacity rates of
both hot and cold streams, and their outlet temperatures are also often set. Therefore, it is usually impossible
to reach the results of an optimal heat exchange system. Instead, it is natural to pose the problem of heat ex-
change system synthesis withminimum irreversibility undermore stringent constraints on the specifications
of the flows. In this case, the optimal heat exchange conditions can only serve as a guide similar to the Carnot
efficiency for heat engines, and the value of the ratioQ = ∑j qj− = ∑jWj−(Toutj− −T

in
j− ) to the entropy production

in a designed system can only be a measure of its thermodynamic perfection.
In the following we present the calculated ratios to evaluate the minimum dissipation from below in a

system with the aforementioned restrictions and the synthesis of a hypothetical system in which such an
evaluation is implemented.

3 Formulation and conditions of optimality of the heat exchange
system synthesis problem

The difference in conditions imposed on the hot and cold streams is due to the fact that the cold streams
leaving the heat exchange system subsequently enter the processes of the plant where specific temperatures
are specified and thus require additional heating. The hot streams, on the other hand, leave the system and
therefore are under no temperature restrictions, only the requirement to achievemaximum thermal efficiency.

Entropy production equals the difference between the total entropy of the outgoing flows and the total
entropy of the incoming flows. Let us consider initially that all flows enter and exit the system in the same
phase state, the pressure change in the system is small, and all the heat capacities are constant. Then the
entropy change of each flow is equal to the product of its heat capacity rate and the logarithm of the ratio of
the absolute temperatures at the inlet and the outlet [15]. Therefore, considering the thermodynamic balance
condition, it results in

σ = σ+ + σ− =∑
i
Wi+(lnT

out
i+ − lnT

in
i+ ) +∑

j
Wj−(lnT

out
j− − lnT

in
j− ). (5)

The first item (from absorbed heat) in this sum is negative and the second (from discharged heat) is positive,
and their sum is always larger thanσ∗ > 0. The expression to calculate the entropyproductionwhen changing
the phase state of a stream will be given below.

Note that all variables that determine the amount of gain of entropy of the cold streams, σ−, are set
through the problem conditions (fixed exit temperatures and heat capacity rates). Therefore the minimum
of the first item corresponds to the minimum of entropy production at temperature Touti+ .

A formal definition of the optimization will look as follows: Maximize the total heat exchange rate

K = q̄
T in+ − T in− −

q̄
W

,

where

W = W−W+
W+ +W−

.
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The Lagrangian of this problem is

L =∑
i
Wi+(lnT

out
i+ − lnT

in
i+ ) − λ∑

i
Wi+(T

out
i+ − T

in
i+ ). (6)

Its stationary conditions in Touti+ lead to

Touti+ =
1
λ
. (7)

Let us formulate the optimality conditions: For any heat capacity rates Wi and inlet temperatures of the
hot streams T ini+ , there is a minimal dissipation corresponding to a heat exchange setup in which the outlet tem-
peratures of the hot streams are the same.

Similarly, we can show that in the case where the inlet temperatures of the cold streams are free: For any
heat capacity rates Wj− and outlet temperatures T inj− of the cold streams, the heat exchange structure for which
the inlet temperatures of the hot streams stay the same corresponds to minimal dissipation.

Let us call this outlet temperature Tout+ . It is determined by the condition of energy balance of the system
(see eq. (2)). Substitution of this value of the outlet temperature of the hot streams allows us to rewrite ex-
pression (5) and find the entropy production in the system that is being designed. With this, for hot streams
condensing at temperatures Tci+ and cold streams evaporating at temperatures Tej−, the right part of eq. (5)
acquires additional summands, corresponding to the decrease of entropy of a stream during condensation,
− giriTci+

, and its increase during evaporation, gjrj
Tej−

. We get

σ0 = σ+ + σ− =∑
i
Wi+(lnT

out
i+ − lnT

in
i+ ) −∑

ci

giri
Tci+
+∑

j
Wj−(lnT

out
j− − lnT

in
j− ) +∑

ej

gjrj
Tej−
. (8)

To compare this value with the lowest possible value corresponding to an optimal heat exchange, we
need to know the total heat exchange rate in the system, which, in turn, implies the choice of contacting
streams, their temperatures, and the nature of hydrodynamics in the counter-current heat exchange units
making this contact.

Knowing the temperature Tout+ makes it possible to find the “available heat” for each hot stream qi and
total “available heat” Q+:

Qi+ = Wi+(T
in
i+ − T

out
+ ),

Q+ =∑
i
Qi+.

If Tout+ < T0, it is necessary to introduce an additional hot stream in such a manner as to even out this in-
equality. It is easy to see that for the outlet temperature determined by expression (2), Q+ = Q− = Q.

4 The dependence of heat exchange rates on temperatures
After the structure of the heat exchange system and the heat loads of the counter-current units are deter-
mined, it is required to find the corresponding heat transfer rates, which the necessary surface areas of con-
tact depend on. Here we present the formulas of heat exchange rates corresponding to various hydrodynamic
modes of these units [4, 9], leaving out the derivation of these formulas. They are labeled by the types of
flow for the hot/cold streams. Mixing means a well-stirred container, and displacement means a pipe flow.
Since in this case there are only two streams, we will be using index + for hot and index – for cold streams for
temperatures and heat capacity rates.
1. Mixing–mixing

In this case we have

K = q̄
T in+ − T in− −

q̄
W

. (9)



160 | S.Y. Boykov et al., Evaluation of Irreversibility and Optimal Organization

This value never exceeds the values of each heat capacity rate. If any stream changes its phase state
(its heat capacity rate is arbitrarily large), the value W is equal to the heat capacity rate of the second
contacting stream. If both streams change their phase state (one evaporates and the other condenses),
then the total heat exchange rate K is

K = q̄
Tc+ − Tc−

. (10)

2. Displacement–displacement (co-current flow)
In this case we have

K = W ln
T in+ − T

in
−

Tout+ − Tout−
. (11)

3. Mixing–displacement (in either order)
When a hot stream is in displacement mode, then

K = W+ ln
T in+ − T

in
− −

q̄
W−

T in+ − T in− −
q̄
W

. (12)

If a cold stream evaporates at temperature Te− at the same time, then

K = W+ ln
T in+ − T

e
−

T in+ − Te− −
g−r−
W+

. (13)

When a cold stream is in displacement mode, then

K = W− ln
T in+ − T

in
− −

q̄
W+

T in+ − T in− −
q̄
W

. (14)

If during this a hot stream condenses at temperature Tc+, then

K = W− ln
Tc+ − T

in
−

Tc+ − T in− −
g+r+
W−

. (15)

4. Displacement–displacement (counter-current)
In this case we have

K = 1
A
ln

T in+ − T
out
−

Tout+ − T in−
. (16)

Here A is defined as

A = W− −W+
W−W+

. (17)

5 Preparation of source data in systems with changing phase
states of streams

Generally the streams of heat transfer agents entering the systemmay have different phase states: vapor (V),
liquid (L), or liquid–vapor mixture (LV). The same conditions may apply when exiting the system.

If a stream k does not change its phase state and only changes its temperature, we will assume that we
know its inlet temperature T ink , the heat capacity rate Wk, and for cold streams its outlet temperature Tout+ .
The outlet temperatures of hot streams Tout+ are subject to choice (see eq. (2)).



S. Y. Boykov et al., Evaluation of Irreversibility and Optimal Organization | 161

If a cold stream j changes its phase state so that it is liquid at the boiling point when entering the system
or saturated vapor (LV) when exiting the system, it has its own mass rate gj, boiling point Tej−, and heat of
vaporization rj. The same is true for hot “condensing” streams. They are in the form of saturated vapor when
entering the system and in the liquid form at the boiling point (LV) on exit.

Let the cold stream at the entrance to the system be an LV mixture with a given weight fraction of vapor
dinj− ≥ 0, and with a weight fraction of vapor d

out
j− ≥ d

in
j− at the exit of LV. Themass flow rate gj, the boiling point

Tcj−, and the heat of vaporization rj are known. For calculation it is convenient to divide it into three streams:
an evaporating stream with the flow rate gcj = gj(d

out
j− − d

in
j−) and two unchanging streams, vapor and liquid,

with flow rates gjdinj− and gj(1 − d
out
j− ), respectively. Both these latter streams do not change their temperature

and phase state and may be disregarded in calculating the increase in entropy and the heat load.
A hot stream can be considered in the same way, with the difference that its outlet vapor weight fraction

is less than that of the inlet vapor. It can be represented as a condensing stream and two unchanging streams
which are not included in the calculations.

When a cold stream is supplied to the system inlet in liquid form with initial temperature of T inj− < T
c
j−, it

is heated to its boiling point Tcj− and then completely or partially evaporated, and it may further be heated to
a superheated vapor temperature. It can be represented by three streams: two “heating” and one “evaporat-
ing.” Moreover, the “heated” streams have different heat capacity rates due to the difference in heat capacity
of vapor and liquid. If it does not evaporate completely, the last stream is also broken down into two: “evap-
orating” and “unchanging,” and the latter does not participate in the calculations.

Similarly, the hot stream in the form of superheated vapor can be represented as cooling to the boiling
point Tci+, fully or partially condensing, and finally a cooling stream from the boiling point to the final liquid
state. If the streamdoes not condense completely, an unchanging stream,which does not change its enthalpy
and entropy, is released from it. There is no liquid cooling stream.

Thus, the first step is the preparation of the initial data in which we move from the actual streams and
their characteristics to the estimated streams. They canbe of two types: not changing their phase state (heated
and cooled) and changing it at the boiling point (evaporating and condensing). The unchanging streams are
not included in the calculation. To calculate the total heat load we use the expression

∑
jh
Wjh−(T

out
jh− − T

in
jh−) +∑

cj
gcj−rcj− = Q. (18)

Here the first sum in the left part of the equation is taken for all “heated” calculated flows, and the second
sum is taken for all “evaporating” flows.

6 Equivalent streams and the relation between the temperatures of
their contacts and the heat loads

In this section we will show that the problem of designing a multi-component heat exchanging system can
be reduced to the problemwith two-component heat exchangers with streams of variable heat capacity rates.

Hot streams are arranged so that index 1 corresponds to the stream with the highest input temperature.
Cold streams are analogously arranged by their output temperatures. This means that the first stream has the
maximum temperature.

As the hot streams transfer heat to the cold ones, the hot temperatures drop to the value Tout+ . This de-
crease in temperature corresponds to the transfer of some of their inherent heat q. For temperature Tout+ , the
corresponding flux is equal to the heat load of the system Q. Let us denote the given heat load as Q for some
intermediate temperature of the hot streams. As hot streams are cooling down, this value changes from zero
to Q.

We will call this Q the current heat load. For each intermediate value of the current heat load, tempera-
tures of the hot streams that transferred heat and temperatures of the cold streams that received this heat in
order to reach the required output temperatures can be found as shown below.
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Definition. We call a cold/hot stream having at each temperature T a heat capacity rate equal to the sum of
the heat capacity rates of all cold/hot flows contained in the system having this temperature an equivalent
stream (Fig. 2).

Figure 2: Dependence of the heat capacity rates of an equivalent stream on the contact temperature (a) for a cold equivalent
stream, (b) for a hot equivalent stream with condensation.

We denote the temperature of the hot equivalent stream by T+(Q) and the temperature of the cold one by
T−(Q). We call these values the contact temperatures of the equivalent streams for the given heat loads.

Thus, the heat capacity rate of the equivalent cold stream depends onwhich cold streams are included in
it at a given temperature. For example, the first cold stream has the highest output temperature T1− compared
to the others, so at this temperature the heat capacity rate of the equivalent cold stream isW1−.

As the temperature decreases, the equivalent cold stream begins to include the second, third, etc., cold
streams and its heat capacity rate increases correspondingly. This happens until the temperature drops to a
value equal to the temperature of oneof the cold streamsat the input. At this point, thenumber of cold streams
entering the equivalent one decreases, and hence does its heat capacity rate. The lowest temperature of the
equivalent cold stream is the lowest of the T inj− temperatures. Its heat capacity rate at this temperature is equal
to the heat capacity rate of the cold stream with a minimal input temperature.

Similarly, for the equivalent hot stream, the highest temperature T+ is T in1− and the lowest is T
out
+ . In con-

trast to the cold stream, the heat capacity rate of the equivalent hot stream increases as the temperature
decreases, as it includes streams with a lower initial temperature.

The dependencies of current contact temperatures of equivalent streams can be calculated from energy
balance conditions similar to expression (2). For the equivalent hot stream,

T+(Q) =
∑imi=1Wi+T ini+ − Q

∑imi=1Wi+
, (19)

where im is the set of hot stream indices for which the input temperature is higher than the current contact
temperature (T ini+ > T+(Q)).

Similarly, for the contact temperature of the equivalent cold stream, we have

T−(Q) =
∑j∈S−(T−)Wj−Toutj− − Q
∑j∈S−(T−)Wj−

, (20)
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where S−(T−) is the set of cold stream indices for which the contact temperature T− satisfies the inequality
Toutj− > T−(Q) > T

in
j− .

It follows from the above expressions that contact temperatures are piecewise linear functions with a
negative slope. The value of this slope is inverse to the current heat capacity rate of the corresponding equiv-
alent stream. This heat capacity rate changes discretely as the composition from the stream changes or at the
boiling/condensation temperature of one of them.

The contact temperature curves of our subsequent examples are shown in Figs. 3 and 5. They decrease
monotonically with the increase of the heat load Q, and T+(Q) > T−(Q). On each of these curves two points
(nodes) are selected where either the composition of streams included in the equivalent stream changes or
the process of condensation/evaporation occurs. In the latter case, horizontal sections appear on the curves
(Fig. 5). In these intervals, only the stream that changes the phase state is in contact. The slope of the cooling
and heating intervals is 1

∑k Wk
, where k are indices of streams included in the equivalent stream at the current

heat load. Thus, approaching the final total valueQ the slope of the dependence T+(Q) in the cooling intervals
is always negative. There will be vertical jumps on the T−(Q) curve if the stream temperature is T inj > T̄j−1,
which means that there is a temperature gap in the equivalent stream.

The temperature dependencies of the equivalent streams on the current heat load determine the entropy
production in the full system. It is equal to

σ(q) =
q

∫
0

(
1

T−(q)
−

1
T+(q)
)dq.

For optimal heat transfer, the heat capacity rate of the equivalent streams can vary, but always such
that their ratio remains constant and inversely proportional to the ratio of the absolute temperatures of the
contacting streams. This ratio is determined by the heat load and the heat transfer coefficient in accordance
with expressions (2) and (3). The dependence of their temperatures on the heat load, Q, given by the hot
streams to reach the current temperature, is piecewise linear.

In real systems, the input and output temperatures of part of the streams are given, as well as their heat
capacities and evaporation and condensation temperatures. Therefore, the optimal dependence cannot be
implemented. In the proposed method of synthesis of the implemented heat exchange system, the tempera-
ture dependence of equivalent streams on the current heat load is close to the case of the optimal counter-
current heat transfer, which means that the irreversibility of the system approaches its lower limit.

7 Calculation of the heat exchange rate for each homogeneity
interval – the “model” heat exchangers

The interval δQν fromone of the nodes on any of the contact curves to the nearest node on the same or another
curve is characterized by the same composition and phase states of the contact streams. Let us call it the
homogeneity interval.

We now change our focus from the abstract contact temperatures of equivalent streams (the “model”
heat exchangers) to the real physical system of heat exchangers. Implementing these temperature relations
requires that we
1. select pairs of contacting streams,
2. select the type of fluid dynamics of each stream, and
3. calculate the heat transfer coefficient for each contact.

We will make this transition in two steps. First, we will determine the fluid dynamics governing each stream
and calculate the heat transfer coefficients in the “model” heat exchangers in which the equivalent streams
are in contact. There is only one such “model” heat exchanger in each homogeneity interval. This step allows
us to select the hydrodynamic mode and find the heat transfer coefficient for each homogeneity interval.
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Second, we break each “model” heat exchanger into separate real heat exchangers connected in parallel in
such a way that the properties of this connection are the same as those of the single “model” heat exchanger.
This implies distributing the “model” heat transfer coefficient in such a way that the change in temperature
for all real contacting streams will equal the value for the equivalent stream. These dependencies in turn
determine the production of entropy.

For each such interval δQν three combinations of contacting streams are possible:
1. Both equivalent streams change their phase states.
2. The hot equivalent stream is cooled and the cold stream is heated.
3. One of the streams changes its phase state, while the other cools down or heats up.

The contact temperature curves provide all the data to calculate the heat exchange rate of the unit in which
the contact is made. Indeed:
– heat capacity ratesW+,W− are equal to the sum of heat capacity rates of streams which are part of the

equivalent contact streams;
– temperatures of equivalent streams at the inlet and outlet of the homogeneity interval are known;
– the heat load of this calculated unit is δQν.

Depending on which of the listed combinations of the contact is implemented, we can choose the type of
hydrodynamics of the unit and find Kν from (10) when both streams change their phase state, from (13) and
(15) when the phase state changes in one of the equivalent streams, and, finally, from (16) and (17) when
neither stream changes its phase state. The heat exchange rate when one stream condenses or evaporates
and the other is inmixingmode is greater thanwhen the second stream is in displacementmode, so this heat
exchange rate value is used onlywhen themixingmode is dictated by technological considerations. Thus, we
let the heat transfer requirements determine the types of heat exchangers. Prices and sizes of the equipment
are not considered here.

Having found the heat exchange rate Kν for each of the ν homogeneity intervals and having summed up
these rates on all intervals, we end up with the total heat exchange rate K, which can be found by organizing
counter-current heat exchange of equivalent streams. In turn, knowing the total heat exchange rate Q allows
us to calculate the least possible entropy production σ∗ with (3) and evaluate the degree of thermodynamic
perfection of the constructed system as η = σ∗

σ0 , where σ
0 is found from (8).

8 On the physical implementation of the calculated system

In “model” heat exchangers equivalent streams are in contact. Real streams have the same temperatures as
the equivalent ones. Only one hot or one cold stream can involve a phase transition on any homogeneity in-
terval. Thus, a real heat exchanger with both streams changing their states is a condenser-vaporizer with two
streams in contact. When one of the streams (let us take the hot one) changes its state, the “model” heat ex-
changer can be split into several two-streamheat exchangers in which the part of the hot stream proportional
to the heat capacity rate of the cold one condenses. The latter satisfies the displacement condition. The heat
transfer coefficient K needs to be distributed between these heat exchangers also proportionally to the heat
capacity rate of the cold stream. This set of two-stream heat exchangers has the same characteristics as the
“model” one.

In the case when no stream changes its state, the “model” heat exchanger implements the optimal dis-
placementwith counter-current streams and corresponding heat capacitiesW+ andW−. Such heat exchanger
can be implemented as the parallel connection of heat exchangers with the same fluid dynamics. The num-
ber of these heat exchangers is equal to the number of cold streams. If the cold stream has the heat capacity
rate Wj−, then there must be a hot stream in the corresponding heat exchanger with the heat capacity rate
Wi+ = Wj−

W+
W−

.
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Because all the hot streams have the same temperature on the left-hand side of a homogeneity interval,
every heat exchanger must include a stream with such a heat capacity rate that the total heat capacity rate
will be equal toW+. The heat transfer coefficient in this case is Kij = Kν

Wj
W−

. The set of such two-stream heat
exchangers implements the “model” one for the corresponding homogeneity interval.

In pseudocode the heat exchanger synthesis algorithm has the following steps, as also illustrated by the
examples in the next section:
1. Calculate all flows based on the source data table.
2. Order the hot streams according to their inlet temperatures and the cold streams according to their outlet

temperatures.
3. Transition to equivalent flows.
4. Calculate each equivalent flow dependence on its temperature, heat capacity rate, and current heat load.
5. Determine the boundaries of the intervals of homogeneity.
6. Determine the hydrodynamic regime and calculate the heat transfer coefficients for the dual-flow

“model” heat exchangers for each interval of homogeneity.
7. Calculate the total heat transfer coefficient.
8. Calculate the actual and minimally possible entropy production and, based on them, the coefficient of

thermodynamic perfection of the system.
9. Turn to a physically feasible heat exchanger system.

The following examples clarify this algorithm.

9 Examples
Example 1 (Quadruple-flow heat exchanger). Let us consider a system with two hot and two cold streams.
Source data are presented in Table 1.

Table 1: Source data for the two heating streams of Fig. 4 (vertical).

No. T ini+ K Wi W/K T inj− K T outj− K Wj W/K qj W

1 460 100 350 400 200 10000
2 360 150 300 340 150 6000

Since all flows do not change their phase state, the table of estimated flows will be similar.
1. The required heat is

q− = q̄ = W1−(T
out
1− − T

in
1−) +W2−(T

out
2− − T

in
2−) = 200 ⋅ 50 + 150 ⋅ 40 = 16000W.

2. The outlet temperature of hot streams, according to expression (2), is

Tout+ =
100 ⋅ 460 + 150 ⋅ 360 − 16000

100 + 150
= 336K. (21)

3. The entropy production in a system with no streams that change their phase state is (see eq. (8))

σ0 =∑
i
Wi+(lnT

out
+ − lnT

in
i+ ) +∑

j
Wj−(lnT

out
j− − lnT

in
j− )

= 100 ln 336
460
+ 150 ln 336

360
+ 200 ln 400

350
+ 150 ln 340

300
= 3.76W/K (22)

4. Next, we consider the calculation of the nodes and intervals of homogeneity on the curves of temperatures
of equivalent streams.
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Consider the value T+(0) = T in1+ = 460K. The closest node on this curve is temperature T in2+, equal to 360K,
and the amount of corresponding heat transferred with the first hot stream (only this stream is involved in
heat exchange) is Q = Q1 = W1(460 − 360)100 ⋅ 100 = 10000W. The final value of temperature Tout+ (Q) in
accordance with eq. (21) is 336K. After the first node both hot streams are involved in heat exchange with
total heat capacity rateW2+ = 100 + 150 = 250W/K.

The initial value of the curve T−(0) = Tout1− . The closest node corresponds to the highest temperature
between T in1− and T

out
2− . In our example this temperature is T in1− = 350K. The corresponding value of heat load

is Q2 = W1−(Tout1− − T
in
1−) = 200 ⋅ 50 = 10000W. After this point the first cold stream is not involved in the heat

exchange anymore. The curve T−(Q) jumps vertically to 340K.
The next node is the temperature Tout2− = 340K. In the interval from q = 10000W to q = 16000W only the

second cold stream is involved in the heat exchange.
The dependencies T+(Q), T−(Q) are shown in Fig. 3.

Figure 3: Combined heating temperature T+(Q) and cooling temperature T−(Q) for the non-condensing heat exchanger setup
of Fig. 4 versus heat load Q. The vertical discontinuity of T out− indicates no heat requirement in that temperature interval. The
dotted arrows imply that the cold (−) flow gets heated while the hot (+) flow gets cooled during the process.

Thus, we can distinguish two homogeneity intervals on the horizontal axis: from 0 to Q = 10000W and
fromQ = 10000W toQ = 16000W. The first hot and the first cold streams contact each other in the first inter-
val, while the second streams contact each other in the second interval. A possible heat exchange structure
is shown in Fig. 4.
5. Let us find the heat exchange rates for each homogeneity interval under the assumption of counter-current

heat exchange based on (16) and (17).
For the first interval,

A = 200 − 100
100 ⋅ 200

= 0,005, K1 = 200 ln
460 − 400
360 − 350

= 358W/K.

For the second interval,

A = 150 − 250
150 ⋅ 250

= −
1
375
, K2 = −375 ln

360 − 340
336 − 300

= 220W/K.
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Figure 4: The heat exchange system structure without condensa-
tion offering optimal operation, i. e., with least possible entropy
production.

6. Knowing the total heat exchange rate K = K1 + K2 = 578W/K allows us to calculate the least possible en-
tropy production σ∗ with eq. (3) and evaluate the degree of thermodynamic perfection of the constructed
system. We have

m = 1 − 1
578
(100 ln 460

336
+ 150 ln 360

336
) = 0.928,

σ∗ = 578 (1 − 0.928)
2

0.928
= 3.22, η = 3.22

3.76
= 0.86.

The system consists of three counter-current units. The first hot stream goes through two units in succession,
and the second only goes through the third. The second cold stream is branched between the second and the
third units so that the relationships of heat capacity rates of hot and cold streams in each of these units stay
the same such that

W21 = W2−
W1+

W1+ +W2+
= 150 100

100 + 150
= 60W/K, (23)

W22 = W2−
W2+

W1+ +W2+
= 150 150

100 + 150
= 90W/K.

Each unit has its own counter-current heat exchanger.

Example 2 (Quadruple-flow heat exchanger with condensation). Let us consider the system from Example 1
with one modification, i. e., the first hot stream enters the system in the form of saturated vapor at the tem-
perature of condensation, and with the following parameters:

T in1+ = 460K, r1+ = 833 kJ/g, g1+ = 0.012 kg/s, W1+ = 36.2W/K.

Since one stream condenses in the heat exchange process, estimated hot streams will be as shown in Table 2.

Table 2: Estimated optimal cooling streams of Fig. 4 (horizontal).

No. T inj+ , K W, W/K gi+, kg/s ri+, kJ/kg
1 460 – 0.012 833
2 460 36.2 – –
3 360 150 – –
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Calculations will be carried out in the same sequence as in Example 1.
1. The required heat is

Q− = Q = W1−(T
out
1− − T

in
1−) +W2−(T

out
2− − T

in
2−) = 200 ⋅ 50 + 150 ⋅ 40 = 16000W.

2. The outlet temperature of hot streams, according to expression (2), is

Tout+ = −
833 ⋅ 12 + 36.2 ⋅ 460 + 150 ⋅ 360 − 16000

36.2 + 150
= 347.6K. (24)

3. The entropy production in a system considering the condensing stream (see eq. (8)) is

σ0 = −g1r1
T in1+
+∑

i
Wi+(lnT

out
+ − lnT

in
i+ ) +∑

j
Wj−(lnT

out
j− − lnT

in
j− )

= −
10000
460
+ 36.2 ln 347.6

460
+ 150 ln 347.6

360
+ 200 ln 400

350
+ 150 ln 340

300
= 8.04W/K. (25)

4. Next, we consider the calculation of the nodes and intervals of homogeneity on the curves of temperatures
of equivalent streams.

Consider the value T+(0) = T in1+ = 460K. The closest node on this curve corresponds to the end of a horizon-
tal condensation interval, and the associated point on the horizontal axis is 10000W. Only the condensing
stream and the first cold stream are involved in the heat exchange.

In the next interval, the condensate with heat capacity rateW1+ = 36.2 contacts the cold stream until the
condensate temperature drops to 360K. At the same time, it transfers heat equal to δQ = 3620W, heating the
cold stream 24.1 K, from 315.9 to 340K.

In the last interval, hot streams are combined, so that their total heat capacity rate is equal to W+ =
36.2 + 150 = 186.2W/K. They are cooled to Tout+ = 347.6K while heating the cold stream from 300 to 315.9 K.

The initial value of the curve T−(0) = Tout1− . The closest node corresponds to the starting temperature of
one of the cold streams, 350K. At q = 10000 the cold stream contact temperature is reduced to 340K and
then the second cold stream contacts in the second interval one, and in the last interval, the third one, two
hot streams. Its heat capacity rates are in accordance with eq. (23), i. e.,

W21 = 150
36.2
186.2
= 29.2W/K, W22 = 150

150
186.2
= 120.8W/K.

The dependencies T+(Q), T−(Q) are shown in Fig. 5. The structure of the heat exchange system is shown in
Fig. 6. In the first heat exchanger the condensation mode for the hot stream and the displacement mode for
the cold streams are implemented, while in the following units the displacement mode with counter-current
flow is implemented throughout.
5. Let us find the heat exchange rates for each of the homogeneity intervals taking into account condensation

at the first and counter-current heat exchange rates at the second and third intervals of homogeneitywith
Eqs. (15), (16), and (17).
For the first interval,

K1 = 200 ln
460 − 350

460 − 350 − 10000
200
= 121W/K.

For the second interval,

A = 150 − 36.2
36.2 ⋅ 150

=
1
48
, K2 = 48 ln

460 − 340
360 − 315.9

= 48.05W/K.

For the third interval,

A = 150 − 186.2
186.2 ⋅ 150

= −
1
772
, K3 = −772 ln

360 − 315.9
347.6 − 300

= 59W/K.

The dependence on contacting temperatures of the heat load is shown in Fig. 5.
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Figure 5: Combined heating temperature T+(Q) and cooling temperature T−(Q) for the condensing heat exchanger setup of Fig. 6
versus heat load Q. The horizontal section of T out+ represents condensation while the vertical step of T out− indicates no heat re-
quirement in that temperature interval. The dotted arrows imply that the cold (−) flow gets heated while the hot (+) flow gets
cooled during the process.

Figure 6: The heat exchange system structure with condensation
of the hot stream offering optimal operation, i. e., with the least
possible entropy production.

6. Knowing the total heat exchange rateK = K1+K2+K3 = 228W/Kallowsus to calculate the least possible en-
tropy production σ∗ with eq. (3) and evaluate the degree of thermodynamic perfection of the constructed
system:

m = 1 − 1
228
(36.2 ln 460

347.6
+ 150 ln 360

347.6
+
12 ⋅ 833
460
) = 0.84,

σ∗ = 228 (1 − 0.84)
2

0.84
= 6.95, η = 6.95

8.04
= 0.86.

10 Pinch analysis comparison
The aforementioned dependencies of temperatures of contacting streams on the current heat load are very
close to the dependencies of temperatures of equivalent hot and cold streams on their enthalpy used in pinch
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analysis. The difference is not only the fact that all calculations in this work are based on the thermodynamic
criterion of minimum dissipative losses (entropy production), but also that the external heating and cooling
sources are not specified directly. This is because they are the additional streams equal to all other streams
in the system, and they affect its optimal organization not only at the end temperatures but also at all inter-
mediate temperatures. Thus, the additional heat stream in the form of vapor condenses and participates in
the further heat exchange in accordance with the general algorithm.

The homogeneous intervals not only define which hot streams contact which cold streams at these tem-
peratures, but also the hydrodynamics of counter-current heat exchangers, their heat transfer rates, and their
heat capacity rates of streams during their splitting. Streams of different temperatures do not mix.

In many cases, the output temperatures of all or some hot streams are not identical (T+). Therefore, by
requiring the equality of these free temperatures obtained under the conditions of minimal dissipation, the
temperatures of the hot streams suitable for the system achieve their lower limit.

The ratios we obtained in the works related to optimal heat exchange allow us to evaluate qualitatively
the perfection of the synthesized system and draw up general guidelines that are recommended to follow
during the synthesis:
1. The ratio of absolute temperatures of equivalent streams should be as constant as possible. This means

that the minimal temperature difference (pitch zone) should be reached near the cold end of the heat
exchange system.

2. The ratio of heat capacity rates of the hot and cold streams should be close to the inverse of the ratio of
their temperatures in the homogeneity zonewith no change in the phase states of any of the streams, i. e.,
W− should be greater thanW+. In this case, the ratio of temperatures in a counter-current heat exchanger
will be constant during the contact.

11 Conclusion
This paper proposes an algorithm for calculation of minimum irreversibility for heat exchange systems with
constant temperatures, heat capacity rates of inlet streams, and given heat load. The algorithm leads to a
solution in a finite number of steps.With this algorithm it is possible to find the structure and the distribution
of heat loads and surfaces of the heat exchange between counter-current units in the given system. Each flow
can contact multiple flows. The proposed algorithm can be considered to follow a thermodynamic rationale
and as development of pinch analysis.

Identifiers
q heat flux density, W/K
Q heat flux, W
T temperature, K
g the refrigerant use rate, kg/s
σ entropy production, J/K
W heat capacity rate, W/K
K total heat exchange rate, W/K
s contact surface, m2

r vaporization heat, J/kg
C specific heat capacity, J/kg K
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