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GENERAL PROBLEMS OF TRANSPORT THEORY

THERMODYNAMIC ANALYSIS OF MULTISTAGE 
MECHANICAL SEPARATION PROCESSES

A. M. Tsirlin, A. I. Sukin, and B. Andresen  UDC 536.755

From the viewpoint of thermodynamics at a fi nite time, the limiting possibilities of mechanical separation systems 
are considered. Lower limits of energy expenditure are obtained for separation systems with a given performance. 
It is shown that these expenditures do not tend to zero, when one of the components of the mixture being separated 
tends to a unit concentration. The estimates obtained are used to analyze multistage separation systems with recycles 
and, in particular, isotope separation systems. For each systems, relationships between the fl ows, contact surfaces, 
and the stage number are found, which follow from the conditions of minimum dissipation under the assumption of 
the constancy of the enrichment factor. A condition of the optimality of the order of separation of multicomponent 
mixtures in mechanical systems has been obtained.

Keywords: multicomponent mixtures, multistage mechanical separation systems, realizability region, contact 
surface, entropy production, isotope separation.

Introduction. Despite of the fact that the fi rst works on optimization thermodynamics (thermodynamics at a fi nite 
time) were published in the early 1960s, and since then this branch of irreversible thermodynamics has been actively 
developed [1], the possibilities of optimization thermodynamics and its applications to technological systems are far from 
being exhausted.

A work on the form of the cycle of a heat engine, for which the power of the engine is maximum, was published 
in France as early as at the end of the nineteenth century. But only with the development of nuclear power engineering this 
problem acquired practical importance, and, starting with the well-known article by I. I. Novikov published in the Journal 
of Nuclear Energy [2], a huge number of studies were devoted to the limiting capabilities and optimal cycles of heat engines 
and later of refrigerating machines. Later, largely due to the eff orts of the schools of S. Berry in the USA and L. Rozonoer 
in Russia, the problems on the limiting possibilities of thermodynamic systems of diff erent nature with nonzero fl ows were 
recognized as a separate area of thermodynamics.

A signifi cant part of energy is spent by humanity on separation processes. These processes diff er greatly by the 
nature of the energy used and by the design. Absorption and adsorption–desorption cycles, rectifi cation, vaporization, drying, 
and zone melting are used to separate thermal energy and are therefore classifi ed as thermal processes. Centrifugation and 
membrane separation use mechanical energy; therefore, these processes are called mechanical. Boshnyakovich [3] pointed 
out that the largest unproductive energy losses in industry occur in chemical and metallurgical processes. For example, 
about six percent of the energy contained in oil is spent on its separation.

An analysis of energy losses in the indicated industries is carried out using the concept of exergy [4]. The exergy 
approach makes it possible to fi nd losses due to irreversibility in a designed or operating system and to compare the systems 
by the magnitude of these losses, but it does not say anything about how and how much irreversible losses can be reduced 
with account for the limitations on the dimensions of apparatuses and their performance, and how to organize the process in 
such a way as to minimize these losses.

An estimate of the minimum energy needed to separate a mixture of a particular composition can be obtained using 
the methods of reversible thermodynamics, however, these estimates are very rough and do not take into account kinetic 
factors (the laws and coeffi  cients of heat and mass transfer and the system performance). In a number of cases, irreversible 
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estimates not only quantitatively but also qualitatively diff er from reversible ones. So, for "poor" mixtures, i.e., mixtures in 
which the concentration of one of the components is close to unity, the irreversible estimate, in contrast to the reversible one, 
tends not to zero, but to a fi nite limit, which depends on the kinetic coeffi  cients. This fact is confi rmed in real apparatuses, 
where for "poor" mixtures, for example, in the process of separation of uranium isotopes, the actual energy expenditures 
exceed their reversible estimates by thousands of times [5] (recall how it is diffi  cult to fi nd a needle in a haystack).

The thermodynamic balances (material, energy, and entropy ones) of mechanical and thermal separation systems 
are diff erent, because in the fi rst case, the fl ow of expended energy is not conjugated with the entropy fl ow and is not 
included into the entropy balance of the system. Usually processes in mechanical systems can be considered isothermal. In 
thermal systems, the energy fl ow is supplied to the system at one temperature, and is removed at another, and is associated 
with the supply and removal of entropy. Irreversible losses associated with the supply and removal of heat reduce the 
separation work, so that for thermal separation processes the productivity reaches a maximum with increasing heat fl ows 
and then decreases.

Account for the irreversibility and its minimization allow one not only to obtain an estimate for minimum 
expenditures of heat at a fi xed productivity, but also to fi nd the thermodynamic limit of productivity, above which it cannot 
exist at any heat losses. The dependence of the maximum productivity of the process on energy expenditures or the minimum 
energy expenditures on the productivity is the thermodynamic boundary of the multitude of realizable modes of the process 
(realizability set).

The aim of the present work is to obtain the lower limit for the work of mixture separation in mechanical multistage 
systems, such as diff usion isotope separation systems and isotope separation systems using centrifuges, with account for the 
irreversibility factors, construction of a realizability set for them, and obtaining a rule for choosing the order of separation of 
multicomponent mixtures, which minimizes energy expenditures, on the basis of the general methodology of thermodynamics 
at a fi nite time [6–12]. Such kind of problems are solved in two stages: 1) the sought estimates of the intensity of fl ows 
are expressed in terms of the production or increase of entropy with the use of the equations of thermodynamic balances 
of matter, energy, and entropy, and 2) the minimum possible production of entropy min is determined as a function of the 
intensity of the fl ows at the given restrictions posed on the heat and mass transfer surface and on the intensity of some 
fl ows. The substitution of the found dependences into the equations of thermodynamic balances determines the limit of 
possibilities of the thermodynamic system.

The Set of Realizability of Mechanical Separation Systems. Assumptions and formulation of the problem. 
Let us consider an initially reversible isothermal process of mixture separation. We will assume that the mixture and its 
components are close in their properties to ideal gases. With this assumption taken into account, the chemical potential of 
the ith component will have the form

 0( , , ) ( ) ln , 1, , ,i i i iT P C T RT PC i n        (1)

where Ci is the concentration of the ith component, T and P are the temperature and pressure in the system.
Let us assume that the temperature and pressure in the system before and after the end of the separation process 

are the same, and the system is adiabatically isolated (no heat is supplied or removed). The work of separating a mole of 
a mixture in such a system with an arbitrarily slow process is equal to the change in the free energy of the mixture (of the 
Gibbs energy), i.e., for one mole of the mixture, to the total increment of its chemical potentials [3]. This work can be 
expressed in terms of the initial concentration of the mixture C0 = (C1

0, …, Ci
0, …, Cn

0) and the concentration of the mixture 
in those two subsystems where it entered after the separation: C1 = (C11, …, C1i, …, C1n) and C2 = (C21, …, C2i, …, C2n).

Let the fraction of the mixture that enters the fi rst subsystem be equal to  and the fraction that enters the second 
subsystem be equal to 1 – . Then the change in the molar energy of the mixture will be equal to

 
0 1 1 2 2 0 0

1
( ( , , ) (1 ) ( , , ) ( , , )) .

n

i i i i i i i i i
i

A C T P C C T P C C T P C


         
 

 (2)

If we substitute the expressions for the chemical potentials of the mixture into (2) and take into account that for any 
component of the mixture the material balance conditions are valid:

 1 2 0(1 ) , 1, , ,i i iC C C i n         (3)

then the terms 0i and RT ln P cancel out, and expression (2) takes the form
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      
 

 (4)

The fraction withdrawn from the mixture is related to the fl ow concentrations as 

 

0 2

1 2
.i i

i i

C C
C C


 

  
 (5)

On complete separation of the mixture, when one of its components is taken into each of the subsystems and its amount and 
concentration are equal to i = C0i and Cii = 1, formula (4) can be used to calculate the work of mixture separation into pure 
components in a reversible process (the reversible work of Gibbs separation):
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ln .

n

i i
i

A RT C C


 
 

 (6)

It follows from comparing Eqs. (4) and (6) that the reversible work of incomplete separation of the mixture is equal to the 
diff erence between the reversible work of complete separation of the initial mixture and the average reversible work of 
complete separation of the mixture in subsystems 1 and 2 with weights  and 1 – :

 0 0 01 02(1 ) .A A A A         (7)

The thus-found energy expenditures for the separation of the mixture represent a reversible lower limit of the actual 
energy expenditures. For the separation of a mixture of two-components (of binary mixture) this estimate depends on the 
concentration C0 of one of the components in the initial mixture in the way as is shown in Fig. 1 (curve A0).

Example 1. Let us calculate the reversible energy expenditures on the separation of a binary mixture with N = 3, 
in which the initial concentrations of the components are equal to C01 = 0.2 and C02 = 0.8 at the temperature T = 300 K 
into two parts, in one of which the concentration of the fi rst component C11 is equal to 0.1, and in the other is C21 = 0.9. 
From the material balance condition we have  = 0.875. Taking into account the fact that the concentrations of the second 
component before separation and after separation are defi ned as Cj2 = 1 – Cj1, j = 0, 1, 2, and R = 8.29 J/(mole∙K), we obtain 
A0 = 1321 J by formulas (6) and (7), after multiplying the molar work of separation by three. In this case, the reversible 
work of mixture separation into pure components will be 0

0A  = 3745 J.
Reversible estimates do not take into account kinetic factors (heat and mass transfer coeffi  cients, intensities of 

fl ows). They depend only on the mixture composition before and after separation. Meanwhile, account for the indicated 
factors leads to the irreversibility of the processes and, consequently, to an increase in energy expenditures. The work of 
mixture separation in an irreversible isothermal process in an adiabatically isolated system can be expressed in terms of the 
reversible work A0 and the increase in the entropy of the system S with the use of Stodola's formula [3]:

 0r 0 ,A A T S A A        (8)

Fig. 1. Dependence of the reversible, A0, and irreversible, Ar, estimates of the minimum 
work of separation of a binary mixture on the concentration of one of the components.
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where T is the ambient temperature. If we go over from quantities to fl ows, the power expended on mixture separation in 
such a system will be determined as

 0r ,p p T     (9)

where  is the entropy production in the system and p0 is the reversible power. The concept of reversible power requires 
clarifi cation, since in reversible processes the intensity of fl ows is arbitrarily small. However, reversible fl ows can be 
understood as fl ows for which the entropy production associated with them is arbitrarily small. This corresponds to 
arbitrarily large heat and mass transfer coeffi  cients. Therefore, the reversible power is the power expended on the separation 
of a mixture in a system of arbitrarily large dimensions with kinetic coeffi  cients proportional to these dimensions.

Dependence of A on the initial mixture parameters and on the duration of the process. To evaluate energy 
expenditures on mixture separation in the class of irreversible processes, it is necessary to fi nd the minimum increase in 
entropy or the minimum production of entropy at a given duration of the process or a given intensity of fl ows and at the 
given heat and mass transfer coeffi  cients, using formulas (8) and (9).

Let us consider the computational scheme (Fig. 2) that represents the initial mixture and m subsystems, into which 
the streams are directed after separation, as well as the device that implements the separation process (further called the 
"working body"). The working body receives energy from outside and creates fl ows of matter. Let us assume that the 
composition and total number of moles of the mixture at the beginning of the process of its separation C0 and N0, the 
composition of the mixture in each jth subsystem Cj at the end of the process, the number of moles entering each subsystem, 
Nj, and the duration of the process  are assigned and satisfy the material balance conditions (3). The driving force that 
creates the fl ows of matter is the diff erence in chemical potentials between the working body and the initial mixture and 
between the working body and subsystems. In an isothermal process, the magnitude of the chemical potential can be 
controlled by changing the pressure.

Separation into two fl ows. For simplicity, we will consider only two subsystems and a binary mixture. The composition 
of the mixture in the second subsystem is determined completely by its initial composition and by the composition of the 
separated fl ow obtained in the fi rst subsystem. The sum of the concentrations of two substances in each subsystem is equal 
to unity: C2 = 1 – C1. Let us determine the diff erence of chemical potentials for the ith substance:

w w
0 0 0 1 1 1( ) , ( ) , 1, 2 ,i i i i i i i          

Fig. 2. Scheme of mixture separation into m subsystems.
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where w
0i  and w

1i  are the chemical potentials of the working body at the boundaries of its contact with the reservoir 
and subsystem. The increase in entropy associated with the creation of the fl ow coming from the reservoir into the fi rst 
subsystem is equal to

 

2

01 01 0 11 1
10

1 ( ) .i i
i

S g g dt
T




    

 
 (10)

The parameters of the working body do not change during the cycle, therefore the following condition is fulfi lled:

 
0 1

0 0

, 1, 2 .i ig dt g dt i
 

  
 

 (11)

The total quantity of the ith substance transferred to the subsystem in time  is given and equal to the product of the number 
of moles N(), transferred to the subsystem, by the concentration C1i().

Optimal solution. The problem on the minimum of S1 in the case of fulfi llment of condition (11) at g0i  0 and 
g1i  0 is reduced to the optimal control problem, since 1 depends on the concentration C1 of mixture in the subsystem, 
which, in turn, varies depending on the composition and fl ow intensity g1(t). However, this problem is greatly simplifi ed in 
that widespread case, in which the diff erences of the chemical potentials 0i and 1i are uniquely related to fl ows g0i and 
g1i, respectively. In all of the cases where the processes are close to equilibrium, the fl ows are proportional to the driving 
forces (Onsager kinetics). In a more general case, we have

0 1
0 0 1 1( ) , ( ) , 0 .i i

i i i i
dg g

T T dg
  

    

Problem (10), (11) is divided into subproblems:

 
1 1

0 0

1 ( ) min , 0, 1 , 1, 2 ,i i i i iS g dt g dt N C i
T

 

        
 

 (12)

where i = ( )i i ig g  


  is the entropy production. In the case of optimum solution of problem (12), the Lagrange 

function

( ( ) )i i i
i

L g g   

is stationary with respect to gi. The function i is convex down the gi, since it is the product of the expenditure of substance 
into the driving force i, which increases monotonically with gi. For this reason L has the only minimum, and the optimal 
fl ow rate gi is constant and equal to NCi/ for any dependence i(g), which increases with the fl ow rate.

Let us consider the Onsager kinetics, when the mass transfer fl ux is proportional to the thermodynamic driving 
force, i.e., to the diff erence of chemical potentials divided by the temperature T. In this case

 
.i i

i i i
i

gg k
T k


   
 

 (13)

For isothermal processes occurring in membrane systems and mixtures of ideal gases, the diff erence of chemical 
potentials of the ith component is equal to the logarithm of the ratio of its partial pressures on both sides of the membrane. In 
centrifugation systems, the diff erence in pressures is created by centrifugal forces depending on the speed of the rotation of 
centrifuges and on the molecular weight of the components [13, 14]. In both cases, the values of the eff ective mass transfer 
coeffi  cients, defi ned as the ratio of the mass transfer fl ux to the diff erence in the pressure logarithms, can be found from 
experimental data.

The minimum increase in entropy corresponding to dependence (13) is equal to
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min min ,i i
i

i i

NCS S
T
         

 
 

 (14)

and the minimum separation work for the fi rst subsystem is given by the relation

 
1min 0 .i

i
i

NCA A N         


 
 (15)

Since the optimal values of the fl ows are determined through the given initial and fi nal states of the system, the substitution 
of them into the dependences ji(gji) allows one to assess (15).

For a process occurring in the vicinity of equilibrium, when the fl ows obey the Onsager kinetics (13), it follows 
from (15) that for the fi rst subsystem
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 (16)

where the equivalent mass transfer coeffi  cient in the ith component is equal to 
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0 1
.i i

i
i i
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k k


  

 (17)

Expression (16) can be represented as
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 (18)

where the molar reversible work of separation is
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 (19)

Quite similarly, for the second subsystem we obtain the relation
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 (20)

where the molar reversible work of separation is
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 (21)

In this case, C1i + C2i(1 – ) = C0i, i = 1, 2. The total irreversible work of separation is defi ned as
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 
 

 (22)

which is equal to zero at C0i = 1, i = 1, 2. It is shown in Fig. 1.
Going over from quantities to fl ows, we obtain an expression for the power of separation of a binary mixture into 

two fl ows in an irreversible process in the form of a quadratic parabola:
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For the sake of defi niteness, we will assume that the fl ow into the fi rst subsystem is enriched with the target component with 
concentration C11 with 11k  > 12k  (enrichment condition). The coeffi  cients of the parametrized boundary of the realizability 
set are defi ned as

 

2 2 22 2
2 21 2

0 1 1 2 2 0 0
1 21 1 1

[ ln (1 ) ln ln ] , (1 ) .i i
i i i i i i

i ii i i

C Cc A RT C C C C C C d
k k  

             
 

 (24)

Some of the mass transfer coeffi  cients can be close to zero (the component is inseparable from the mixture) or to infi nity 
(creation of the component fl ow does not require power consumption). Only those processes are implemented, in which 
power expenditures are not lower than those calculated by Eq. (23). The realizable processes lie above the boundary shown 
in Fig. 3.

The reversible effi  ciency of the process (the number of modes of the mixture to be separated per unit of expended 
energy) is defi ned as 0 = 1/s. The effi  ciency of the irreversible process is equal to

 

1 .g
p c dg
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  

 (25)

Note that the irreversible estimate of the molar work of separation calculated by Eq. (18) is not continuous. It 
is equal to zero for the case where the concentration of one of the components is equal to zero, but at an arbitrarily low 
concentration of any component (for "lean" mixtures) it takes a fi nite value (curve Ar in Fig. 1); therefore the inaccuracy of 
reversible estimates for such mixtures is especially large.

The fact that the dependence of the system performance on the expenditures of energy is close to a quadratic 
parabola allows one to fi nd the coeffi  cients c and d from the experimental data and to use the dependence obtained in solving 
the problem of optimization of the separation system structure consisting of several subsystems.

Multistage Mechanical Systems. Separation of isotopes. In many cases, the process of mixture separation is 
implemented in a system of successive interconnected stages. At each stage, the mixture fl ow entering the system is divided 
into a fl ow enriched with the target component and a fl ow depleted in the target component. If the fl ow of the raw material is 
fed to the inlet of such a multistage system, the enriched fl ow that enters each next stage will decrease and the performance 
of the system in terms of the fl ow with a given concentration of the target component will be very small, and its concentration 
in the outgoing depleted fl ows will exceed the concentration in the raw material. Therefore, the depleted fl ow after each 
stage enters the recycle, and the raw material fl ow is fed not to the initial, but to the intermediate stage of the cascade. The 
structure of such a multistage system is shown in Fig. 4.

We will assume that the components of the raw material fl ow and of outgoing fl ows C0, Cf, and Cout are given, 
which means that also the degree of their enrichment, defi ned as the ratio of the target component concentration to the 

concentration of the remaining component in the binary mixture: x(C ) = 
1

C
C

. The conditions of the dissipation minimum 

require that the fl ows, which mix up at the point of raw material feeding and at the points of entry of recirculating streams, 
have the same composition (condition of mixing homogeneity). This requirement can be satisfi ed exactly for binary mixtures, 
and only approximately for multicomponent ones.

Fig. 3. Form of the realizability set for mechanical separation systems.
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Let us write down the material balance equations for the jth stage, taking into account the condition of mixing 
homogeneity:

 

r r r r
1 1 2 1 1 1

r r 0
1 1 2

, ( ) ,

, , 2, , , 2, , 1 .

j j j j j j j j j j j
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  

     

        

 (26)

The system is fed between the stages m and m + 1; the lean stream (dump) is put out after the fi rst stage, and the enriched 
target stream is put out after the nth stage. Like rectifi cation, the section of the system preceding the feeding is called 
exhaustive and that following the feeding is called reinforcing. For the exhaustive section conditions (26) yield the recurrent 
relations
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 (27)

with boundary-value conditions for j = 1

r r
1 out out 00 , , (1 ) .j j jg C C g g g      

With account for these conditions we have the relations
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 (28)

For the reinforcing section Eq. (27) yields
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For j = n we have the boundary-value conditions Cn = Cf, gn = gf = g0 and r
1ng   = 0, whence we have
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   
 (30)

As an indicator of the separating ability of the stage, use is made of the separation factor equal to the ratio of the 
degrees of enrichment at the output and input of the stage: j = xj/xj–1. It is considered the same for each stage, and under 
this condition, the system confi guration is sought. The concentration of the target component depends unambiguously on 
the degree of enrichment:

 
( ) , , ( ) , .

1 1
j j

j j
j j

x x
C x C x

x x







  
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 

 
 (31)

Fig. 4. Structure of the multistage mechanical separation system.
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Distribution of the area of membranes or of the number of single apparatuses between individual stages. Since 
the fl ows and compositions of the separation products vary from stage to stage, the area of the membranes must vary too. 
In practice, the number of single apparatuses (centrifuges) connected in parallel at each separation stage is changed. We 
express the entropy production j at each stage through the fl ows, concentrations of the components, and mass transfer 
coeffi  cients. Moreover, we will assume that for the target component at each stage the mass transfer coeffi  cient is equal to

1 1 2 2, ,j j j jK S k K S k 

where k1 and k2 are the specifi c mass transfer coeffi  cients for each component, and Sj is the membrane area or the number of 
standard single apparatuses (centrifuges) per jth step. Then the entropy production for the fl ow proportional to the diff erence 
of chemical potentials will be determined by the relation

 

2 2 2

1 2

(1 )
.j j j

j
j

g C C
S k k

 
   

    
 (32)

In order to reduce the notation, we introduce the notation for the "squared reduced fl ow":
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 (33)

and solve the problem on such a distribution of the total surface or of the total number of single apparatuses S between the 
stages, for which
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j j
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 (34)

The Lagrange function of this problem is defi ned by the expression
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From the conditions of its stationarity, we obtain
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 (35)

After the substitution of conditions (35) into the expression for the entropy production (34) we obtain

 

21 .( )j
j

M
S

  
 

 (36)

Thus, for the separating ability constant for all stages, it is necessary to express the expenditures and concentrations 
included in the expression for Mj in terms of the given concentrations of output fl ows and the magnitude of the feeding fl ow 
and substitute into Eq. (36).

Computational formulas for a fi xed separation factor. In this case, the number of stages to the point of power entry 
and the total number of stages are equal to

 

0
0 out out f f out outln ( ) ln ( ) ln ( ) ln ( )1 , 1 .

ln ln
x C x C x C x Cm n 

   
   

 (37)

To calculate the fl ows at each stage, the following concentrations are substituted into formulas (27)–(29):
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TABLE 1. Results of Calculations in Example

j xj Cj gj Mj Sj
*

1 0.001189 0.001188 0.78 0.63 0.43

2 0.001296 0.001295 1.49 2.33 0.83

3 0.001413 0.001411 2.14 4.83 1.19

4 0.001540 0.001538 2.74 7.92 1.52

5 0.001679 0.001676 3.29 11.42 1.83

6 0.001830 0.001827 3.80 15.19 2.11

7 0.001995 0.001991 4.26 19.13 2.37

8 0.002174 0.002169 4.69 23.14 2.60

9 0.002370 0.002364 5.08 27.16 2.82

10 0.002583 0.002576 5.44 31.14 3.02

11 0.002815 0.002808 5.77 35.03 3.20

12 0.003069 0.003059 6.07 38.80 3.37

13 0.003345 0.003334 6.35 42.44 3.52

14 0.003646 0.003633 6.61 45.93 3.67

15 0.003974 0.003959 6.84 49.26 3.80

16 0.004332 0.004313 7.06 52.42 3.92

17 0.004722 0.004700 7.26 55.42 4.03

18 0.005147 0.005120 7.44 58.26 4.13

19 0.005610 0.005579 7.61 60.93 4.22

20 0.006115 0.006078 7.76 63.45 4.31

21 0.006665 0.006621 7.91 65.81 4.39

22 0.007265 0.007213 8.04 68.04 4.46

23 0.007919 0.007857 7.83 64.57 4.35

24 0.008632 0.008558 7.05 52.37 3.91

25 0.009409 0.009321 6.34 42.30 3.52

26 0.010255 0.010151 5.68 34.01 3.15

27 0.011178 0.011055 5.08 27.19 2.82

28 0.012184 0.012038 4.53 21.60 2.51

29 0.013281 0.013107 4.02 17.04 2.23

30 0.014476 0.014270 3.56 13.33 1.97

31 0.015779 0.015534 3.13 10.32 1.74

32 0.017199 0.016908 2.74 7.89 1.52

33 0.018747 0.018402 2.38 5.95 1.32

34 0.020434 0.020025 2.05 4.41 1.14
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1 r 1 r

out out 1 1 out( ) , ( ) , ( ) ,j j j
j j j jC C x C C x C C C x 

          (38)

where C(m+1xout) = C0 at j = m and C(n+1xout) = Cf at j = n.
Example. C0 = 0.007, Cout = 0.001, Cf = 0.04,  = 1.09, g0 = 1.0 mole/s, T = 323 K, and the specifi c coeffi  cients 

of mass transfer are equal to: k1 = 1.05 and k2 = 0.95. Their dimensionality is (mole2∙K)/(J∙s∙m2). The total contact area is 
equal to S = 100 m2.

Using formulas (37), (38), and (5), we obtain that m = 22, n = 43, and  = 0.154, with rounding off  to the larger 
integer. The enrichment degree, concentrations, and the substance fl ow at the outlet of the fi rst stage, determined by formulas 
(27) and (29), are equal to

r 2
out 2 out 1 out0.001001 , ( ) 0.001089 , ( ) 0.001188 ,x C C x C C x      

out out

1 out 2 out
( )0.846 0.776 /mo s .

( )
le

( )
C x Cg

C x C x
 

 
  

Using formula (33), we fi nd the "square of the reduced fl ow", and using formula (35), we determine the distribution 
of the surface between the stages:

2 2
2

1
0.001188 (1 0.001188)0.776 0.632 .
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




The results of calculations for all the stages are presented in Table 1. The optimal distribution of the contact areas 
is shown in Fig. 5. According to Eq. (36), the total production of entropy is * = 341.91 W/K.

The reversible work of separation of the mole of a mixture can be calculated by formula (4):

0 8.31 323 (0.154 0.04 ln (0.04) 0.154 (1 0.04) ln (1 0.04)

(1 0.154) 0.001 ln (0.001) (1 0.154) (1 0.001) ln (1 0.001)

0.007 ln (0.007) (1 0.007) Jln (1 0.007) 24.64 /mole ,

A          

         

      

whence the reversible power of separation of a mole of a mixture is p0 = A0g = 24.64 W. According to (9), the irreversible 
power expenditures are equal to T* = 323∙341.91 = 110.435 kW. They are 4480 times larger than reversible ones, which is 
confi rmed by the practice of separation of "lean mixtures" (Fig. 1, [17, 18]).

Selection of the Sequence of Separation of Multicomponent Mixtures. It was assumed above that the mixture 
being separated is binary, and separation occurs into fl ows, each of which contains two components. In the case that a 
mixture is multicomponent and it needs to be separated into several fl ows, the problem arises as to the order of separation. 
In this case, multicomponent mixtures are separated sequentially into two fl ows. Thus, mixture of three components is 
separated fi rst into two fl ows, one of which contains two components, and then this fl ow is again separated at the second 

Fig. 5. Optimal distribution of contact areas between stages.
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stage. Both the mass transfer coeffi  cients and the fl ow rates of the output fl ows at each stage depend on the choice of 
the separation boundary. The problem of choosing the order of separation was solved under the assumption of complete 
separation, when each of the output fl ows contains only one component. Here, by the stage we understand a complex of 
separating devices with an equivalent mass transfer coeffi  cient.

As already mentioned, the reversible operation of mechanical systems of power p0 does not depend on the order in 
which the separation is organized, since p0 is determined only by the fl ow rates and compositions of fl ows at the inlet and 
outlet of the scheme as a whole. But according to (28), it is the irreversible component of the power p depends on the order, 
in which the components are selected, that allows one to choose this order.

A mixture of three components. Let us consider a mixture consisting of three components with concentration 
C0 = (C01, C02, C03) and fl ow rate g0, which can be taken as a unit. In this case, the fl ow rates can be expressed in terms 
of their concentrations in the mixture being separated. The components are ordered by the property used for separation 
(density, membrane permeability). The mass transfer coeffi  cients depend on the choice of the separation boundary.

Let us fi nd the irreversible energy expenditures for the case where the fi rst component is initially separated from 
the mixture (direct separation order) (a) and for the case where the third component is separated fi rst, and then the fi rst and 
second (reverse order of separation) (b). Let 1 be the mass transfer coeffi  cient in the direct order of separation and 2 be 
the mass transfer coeffi  cient in the reverse order of separation. For the sake of simplicity, the separation at each stage will 
be assumed to be complete.

In accordance with (28), irreversible energy expenditures for the variant a are equal to

 

2 2
2 201 02 03

1 2 02 2 03 2
1 1

( ) ( / / ) .a a a
C C Cp p p C C
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   

 (39)

The fi rst two terms in this sum represent the losses from irreversibility at the fi rst stage of separation. At g0 = 1 and complete 
separation, the fl ow rates g1 and g2 at the outlet of this stage are equal to C01 and (C02 + C03), respectively. The mixture of 
the second and third components is considered to be one substance with the fl ow rate at the outlet C02 + C03 = 1 – C01. For 
the variant (b) we obtain a similar relation:
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2 203 02 01
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( ) ( / / ) .b b b
C C Cp p p C C

          
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 (40)

If the diff erence between these irreversible expenditures is negative, then the direct order of separation is preferable. The 
condition

 0ab a bp p p        (41)

after simple calculations yields the inequality

 1 01 01 02 2 03 03 02( 2 ) ( 2 ) .C C C C C C       (42)

If the sign of inequality in (42) is opposite, then at the fi rst stage of separation it is preferable to separate the third component.
Example 2. Let the initial three-component mixture have the composition C01 = 0.6, C02 = 0.3, C03 = 1 – C01 – C02 

and the mass transfer coeffi  cients 1 = 0.1 mole2/(J∙s) and 2 = 0.2 mole2/(J∙s). It is easy to see that inequality (42) is valid 
(0.072 > 0.032), which means that fi rst we need to separate the fi rst and then the second and third components.

Multicomponent mixtures. When separating mixtures with more than three components, rule (42) makes it possible 
to compare any two possible variants for choosing the separation boundary by combining several components into one 
equivalent selection (fraction).

Let the total concentration of components with subscripts from 1 to i be equal to x1(i), the mass transfer coeffi  cient 
corresponding to the ith separation boundary be equal to i, the mass transfer coeffi  cient corresponding to the jth boundary 
be equal to j, the total concentration of components from j + 1 to n be equal to x3( j), j > i, and x2(i, j) be the concentration 
of the fraction consisting of the components located between the ith and jth separation boundaries. Note that x1 depends on 
the choice of the upper boundary and x3 — of the lower one. At the fi rst stage it is advisable to select the ith boundary if for 
all values of j > i the inequality similar to (42) is satisfi ed:

 1 1 2 3 3 2( )[ ( ) 2 ( , )] ( )[ ( ) 2 ( , )] .i jx i x i x i j x j x j x i j       (43)
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Let the expression

1 1 2

3 3 2

( )( ( ) 2 ( ))
( )( ( ) 2 ( ))

i
ij
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x i x i x ijF
x j x j x ij
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
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be called the effi  ciency ratio corresponding to the ith separation boundary. At each stage, the choice of the separation 
boundary corresponds to the maximum of the effi  ciency in i at j > i.

Conclusions. The boundaries of the sets of realizable modes for mechanical separation systems have been obtained, 
and it is determined in which way the kinetics of the mass transfer processes exerts its infl uence on their shape. The 
distributions of contact surfaces, fl ow rates of a direct fl ow and of the recycle for a multistage isotope separation system that 
satisfy the conditions of the minimum of energy dissipation in it are obtained on the assumption of constancy of enrichment 
factors in the reinforcing and exhaustive sections. It is shown that account for the irreversibility of the process of separation 
of a multicomponent mixture makes it possible to formulate and solve the problem of the order of mixture separation by the 
condition of the minimum of irreversible energy expenditures.

NOTATION

C, concentration of the target component in the mixture; g, the fl ow of the mixture to be separated; i, number of the 
substance component; N, number of moles of the mixture being separated; p, energy of mixture separation; R, universal gas 
constant; S, entropy of the system; x, degree of substance enrichment; , mass transfer coeffi  cient; , fraction of the mixture 
taken into the fi rst subsystem. Indices: f, fi nite; r, reversibility; out, output; w, wall.
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