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The set of solutions inferred by the generic maximum entropy (Max-
Ent) or maximum relative entropy (MaxREnt) principles of Jaynes –
considered as a function of the moment constraints or their conjugate
Lagrangian multipliers – is endowed with a Riemannian geometric de-
scription, based on the second differential tensor of the entropy or its
Legendre transform (negative Massieu function). The analysis provides a
generalised least action bound applicable to all Jaynesian systems, which
provides a lower bound to the cost (in generic entropy units) of a transi-
tion between inferred positions along a specified path, at specified rates
of change of the control parameters. The analysis therefore extends the
concepts of “finite time thermodynamics” to the generic Jaynes domain,
providing a link between purely static (stationary) inferred positions of a
system, and dynamic transitions between these positions (as a function
of time or some other coordinate). If the path is unspecified, the analysis
gives an absolute lower bound for the cost of the transition, correspond-
ing to the geodesic of the Riemannian hypersurface. The analysis is
applied to (i) an equilibrium thermodynamic system subject to mean
internal energy and volume constraints, and (ii) a flow system at steady
state, subject to constraints on the mean heat, mass and momentum
fluxes and chemical reaction rates. The first example recovers the mini-
mum entropy cost of a transition between equilibrium positions, a widely
used result of finite-time thermodynamics. The second example leads to
a new minimum entropy production principle, for the cost of a transition
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between steady state positions of a flow system.
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8.1. Introduction

Jaynes’ maximum entropy principle (MaxEnt) and its extension, the max-
imum relative entropy principle (MaxREnt), based on the principles of in-
ductive (probabilistic) rather than deductive reasoning, arguably consti-
tutes one of the most important tools for the solution of indeterminate
problems of all kinds.1–7 In this method, one maximises the entropy func-
tion of a system – a measure of its statistical spread over its parameter space
– subject to the set of constraints on the system, to determine its “least
informative” or “most probable” probability distribution.1,2,7 By a series
of generic “Jaynes relations”, this can then be used to calculate the macro-
scopic properties of the system, providing the best (inferred) description of
the system, subject to all that is known about the system. Since its incep-
tion half a century ago, the MaxEnt and MaxREnt principles have been
successfully applied to the analysis of a diverse range of systems, includ-
ing in thermodynamics (its first and foremost application), solid and fluid
mechanics, mathematical biology, transport systems, networks, economic,
social and human systems.1–9

The aim of this study is to examine a valuable extension to Jaynes’
generic approach, by endowing the set of solutions inferred by Jaynes’
method – considered as a function of the set of moment constraints and/or
their conjugate Lagrangian multipliers – with a Riemannian geometric in-
terpretation, using a metric tensor furnished directly by Jaynes’ method.
The analysis leads to a generalised least action bound applicable to all
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Jaynesian systems, which provides a lower bound for the cost (in generic
entropy units) of a transition between different inferred positions of the
system. The analysis therefore extends the concepts of “finite time ther-
modynamics”, developed over the past three decades,10–43 to the generic
Jaynes domain. The analysis reveals a deep, underlying connection between
the essentially static manifold of stationary positions predicted by Jaynes’
method, and lower bounds for the cost of dynamic transitions between these
positions.

The manuscript proceeds as follows. In §8.2, the theoretical principles
of Jaynes’ MaxEnt and MaxREnt methods are discussed, followed by an
appraisal of a generalised free energy (generalised potential) concept asso-
ciated with Jaynes’ method. In §8.3, the concepts of a Riemannian metric,
arc length and action sums and integrals are developed in a generic Jayne-
sian context, leading to a generic least action bound for transitions on the
manifold of Jaynes solutions. Considerations of minimum path lengths, in-
volving calculation of the geodesic in Riemannian space, are also discussed.
In §8.4, the foregoing principles are applied to (i) an equilibrium thermo-
dynamic system subject to mean internal energy and volume constraints,
and (ii) a flow system at steady state, subject to constraints on the mean
heat, mass and momentum fluxes and chemical reaction rates. The first ex-
ample (§8.4.1) recovers the minimum entropy cost of a transition between
equilibrium positions, a widely used result of finite-time thermodynamics.
The second example (§8.4.2) leads to a new minimum entropy production
principle, for the cost of a transition between steady state positions of a
flow system. The analyses reveal the tremendous utility of Jaynes’ Max-
Ent and MinXEnt methods augmented by the least action bound, for the
analysis of probabilistic systems of all kinds.

8.2. Jaynes’ Generic Formulation (MaxREnt)

8.2.1. Theoretical Principles

The usefulness of Jaynes’ method for statistical inference arises from its
generic formulation, first expounded by Jaynes and other workers in the
context of information theory,1–7 but which can be reinterpreted using
a combinatorial framework (the “Boltzmann principle”).44–51 In conse-
quence, the method can be applied to any probabilistic system involving
the allocation of entities to categories; this includes – but is not restricted to
– thermodynamic systems. For maximum generality, it is useful to include
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source or prior probabilities qi associated with each category i = 1, ..., s, to
give the maximum relative entropy (MaxREnt) or minimum cross-entropy
(MinXEnt) principle. In the event of equal qi, this reduces to the special
case of Jaynes’ maximum entropy (MaxEnt) principle.1–7

The MaxREnt method proceeds as follows. To infer the “least infor-
mative” or “most probable” distribution of a probabilistic system, we wish
to identify its observable realization or macrostate of maximum probability
P. This is equivalent to maximising the following dimensionless function,
chosen for several “nice” mathematical properties:44,45

H =
1
N

ln P, (8.1)

For a system of N distinguishable entities allocated to s distinguishable
categories, it can be shown that the distribution is governed by the multi-
nomial distribution P = N !

∏s
i=1 q

ni
i /ni!, where ni is the occupancy of the

ith category and N =
∑s
i=1 ni. In the asymptotic limit N → ∞, (8.1) re-

duces to the relative entropy function2 (the negative of the Kullback-Leibler
function52,53):

H = −
s∑
i=1

pi ln
pi
qi

(8.2)

where pi = ni/N is the frequency or probability of occupancy of the ith
category. Maximisation of (8.2) is subject to the normalisation constraint
and any moment constraints on the system:

s∑
i=1

pi = 1, (8.3)

s∑
i=1

pifri = 〈fr〉, r = 1, ..., R, (8.4)

where fri is the value of the property fr in the ith category and 〈fr〉 is the
mathematical expectation of fri. Applying Lagrange’s method of unde-
termined multipliers to (8.2)-(8.4) gives the stationary or “most probable”
distribution of the system (denoted *):

p∗i = qi exp

(
−λ0 −

R∑
r=1

λrfri

)
=

1
Z
qi exp

(
−

R∑
r=1

λrfri

)
,

Z = eλ0 =
s∑
i=1

qi exp

(
−

R∑
r=1

λrfri

) (8.5)
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where λr is the Lagrangian multiplier associated with the rth constraint,
Z is the partition function and λ0 = lnZ is the Massieu function.4 In ther-
modynamics, the constraints 〈fr〉 are usually taken to represent conserved
quantities, and thus correspond to extensive variables (e.g. internal energy,
volume and numbers of particles), whilst the multipliers λr emerge as func-
tions of the intensive variables of the system (e.g. temperature, pressure
and chemical potentials). It is useful to preserve this distinction between
extensive and intensive variables, even beyond a thermodynamic context.

By subsequent analyses,1–7,54 one can derive the maximum relative en-
tropy H∗ and the derivatives of H∗ and λ0 for the system:

H∗ = λ0 +
R∑
r=1

λr〈fr〉 (8.6)

∂H∗

∂〈fr〉
= λr (8.7)

∂2H∗

∂〈fm〉∂〈fr〉
=

∂λr
∂〈fm〉

= gmr ∈ g (8.8)

∂λ0

∂λr
= −〈fr〉 (8.9)

∂2λ0

∂λm∂λr
= 〈frfm〉 − 〈fr〉〈fm〉 = −∂〈fr〉

∂λm
= −γmr ∈ −γγγ (8.10)

The second derivatives of λ0 in (8.10) express the dependence of each con-
straint on each multiplier, and therefore give the “capacities” or “suscep-
tibilities” of the system (e.g. in thermodynamics, they define the heat ca-
pacity, compressibility, coefficient of thermal expansion and other material
properties12,55,56). Their matrix γγγ, the variance-covariance matrix of the
constraints (with change of sign), is equal to the inverse of the matrix g
of second derivatives of H∗ in (8.8), yielding the generic Legendre transfor-
mation between the H∗(〈f1〉, 〈f2〉, ...) and λ0(λ1, λ2, ...) descriptions of the
system:2

gγγγ = I, (8.11)

where I is the identity matrix.2 From (8.8) or (8.10) and the equal-
ity of mixed derivatives, we also obtain the generic reciprocal relations
∂〈fr〉/∂λm = ∂〈fm〉/∂λr for the system.

Jaynes also showed that the incremental change in the relative entropy
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can be expressed as:1

dH∗ =
R∑
r=1

λr

(
d〈fr〉 − 〈dfr〉

)
=

R∑
r=1

λrδQr (8.12)

where δWr = 〈dfr〉 =
∑s
i=1 p

∗
i dfri and δQr =

∑s
i=1 dp

∗
i fri can be identified,

respectively, as the increments of “generalised work” and “generalised heat”
associated with a change in the rth constraint, and δ(·) indicates a path-
dependent differential. Eq. (8.12) gives a “generalised Clausius equality”,57

applicable to all multinomial systems in the asymptotic limit.
It is again emphasised that the above relations (8.5)-(8.12) apply to any

probabilistic system of multinomial form, in the asymptotic limit. Although
originally derived in thermodynamics, the above-mentioned quantities need
not be interpreted as thermodynamic constructs, but have far broader ap-
plication. Furthermore, the relations (8.5)-(8.12) apply to the stationary
position of any multinomial probabilistic system. The derivatives (8.7)-
(8.10) therefore relate to transitions of the system between different sta-
tionary positions, or in other words, to paths on the manifold of stationary
positions. Whilst the lack of inclusion of non-stationary positions may seem
unnecessarily restrictive, such geometry provides a sufficient foundation for
most of engineering and chemical equilibrium thermodynamics. As will be
shown, it is also useful for the analysis of many other systems of similar
probabilistic structure.

8.2.2. The Generalised Free Energy Concept

It is instructive to insert (8.12) into the differential of (8.6) and rearrange
in the form:

dφ = −dλ0 = −d lnZ =
R∑
r=1

λrδWr +
R∑
r=1

dλr〈fr〉

= −dH∗ +
R∑
r=1

λrd〈fr〉+
R∑
r=1

dλr〈fr〉

(8.13)

The negative Massieu function −λ0 is therefore equivalent to a potential
function φ which captures all possible changes in the system, whether they
be in the entropy, constraints or multipliers. For constant multipliers, it
simplifies to the weighted sum of generalised work on the system. It thus
provides a dimensionless analogue of the free energy concept used in ther-
modynamics. For constant multipliers, φ|{λr} also provides a measure of the
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dimensionless “availability”, or the available “weighted generalised work”,
which can be extracted from a system. By extension of the principles of
equilibrium thermodynamics, we can thus adopt the potential φ as a mea-
sure of distance from the stationary state. The system will converge towards
a position of minimum φ, representing the balance between maximisation of
entropy within the system H∗, and maximisation of the entropy generated
and exported to the rest of the universe by the transfer of generalised heats
δQr (see63 for further discussion). The advantage of Jaynes’ generic for-
mulation is that φ can be defined for any multinomial probabilistic system,
and is not restricted to thermodynamic systems.1–4,7

Returning to the second derivatives in the last section, we see that λ0

can be replaced by −φ in (8.9)-(8.10). The latter provides a clean (non-
negative) Legendre transformation between matrices g and γγγ, and thus
between the H∗(〈f1〉, 〈f2〉, ...) and φ(λ1, λ2, ...) representations of a system.

8.3. Riemannian Geometric Concepts

8.3.1. Generalised Riemannian Metrics and Arc Lengths

Since the time of Gibbs,58,59 examination of the geometry of the manifold
of stationary positions has been of tremendous interest to scientists and
engineers. In thermodynamics, this has typically involved analysis of the
concave hypersurface defined by the Euler relation S(X̃1, X̃2, ...), where S
is the thermodynamic entropy and X̃r are the extensive variables, or al-
ternatively of its Legendre transform, the convex hypersurface ψ(Y1, Y2, ...)
or F (Y1, Y2, ...), where ψ = F/T is a Planck potential function, F is a
free energy and Yr are the intensive variables.55,56 Such interpretations
have led to major advances in the understanding and analysis of thermody-
namic processes and cycles.58,59 However, adoption of the Jaynes MaxEnt
framework (§8.2) permits a rather different insight, based on a Riemannian
geometric interpretation. As will be evident from the previous discussion,
this interpretation extends well beyond “mere” thermodynamics, forming
a natural adjunct of Jaynes’ generic formulation (§8.2).

Consider the R-dimensional hypersurface parameterised by the con-
straints {〈fr〉} or their conjugate Lagrangian multipliers {λr}, representing
the hypersurface of stationary states within the (R+ 1)-dimensional space
given by (H∗, {〈fr〉}) or (φ, {λr}). If the R parameters are linearly indepen-
dent, the matrices of the second derivatives g (8.8) or γγγ (8.10) are positive
definite (i.e. x>gx > 0 or x>γγγx > 0 for any non-zero vector x60–62). The



October 12, 2009 14:52 World Scientific Review Volume - 9in x 6in SS22˙Master

290 R.K. Niven and B. Andresen

matrices g or γγγ can therefore be adopted as Riemannian metric tensors as-
sociated with the stationary state hypersurface defined by {〈fr〉} or {λr},
and used to interpret its geometric properties. Indeed, even if the R param-
eters are not always independent, whence g or γγγ are positive semidefinite
(i.e. x>gx ≥ 0 or x>γγγx ≥ 0 for x 6= 0), the latter can still be adopted
as pseudo-Riemannian metric tensors on the stationary hypersurface. This
representation was first proposed by Weinhold,10–14 and its implications in
terms of a least action bound were subsequently developed, largely within
a thermodynamic context, by Salamon, Berry, Andresen, Nulton and co-
workers15–36 and also by Beretta,37–39 Diósi and co-workers,40 Crooks and
Feng41,42 and Brody and Hook.43 Some theoretical aspects of the adopted
Riemannian formulation are discussed in Appendix A. It must be noted
that the Riemannian formulation replaces – it cannot be used in conjunc-
tion with – the traditional convex or concave hypersurface interpretation
normally used in thermodynamics and information theory.30

Firstly, the Riemannian geometric interpretation provides an intrinsic
differential or line element (its square, a metric) with which to measure
distances along a specified path on the manifold60,62a:

dsH∗ =
√
d2H∗ =

√√√√ R∑
m,r=1

d〈fm〉 gmr d〈fr〉 =
√
df> g df , (8.14)

dsφ =
√
d2φ =

√√√√ R∑
m,r=1

dλm γmr dλr =
√
dΛ> γγγ dΛ. (8.15)

where f = [〈f1〉, 〈f2〉, ..., 〈fs〉]> and Λ = [λ1, λ2, ..., λs]>. Integration be-
tween points a and b along a path on the manifold, defined by the set of
increments df or dΛ, gives the arc length along that path between those
points:17,41,60,62

LH∗ =

b∫
a

dsH∗ =

b∫
a

√√√√ R∑
m,r=1

d〈fm〉 gmr d〈fr〉 =

b∫
a

√
df> g df , (8.16)

Lφ =

b∫
a

dsφ =

b∫
a

√√√√ R∑
m,r=1

dλm γmr dλr =

b∫
a

√
dΛ> γγγ dΛ. (8.17)

The shortest such path is known as the geodesic. An infinite number of other
paths on the manifold are also possible, of longer arc length, as also given
aStrictly, this line element is not a first fundamental form in Riemannian geometry;60,62

its use as a distance measure is discussed in Appendix A.
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by (8.16) or (8.17). If the manifold is parameterised by some parameter ξ
– which can, but need not, correspond to time t – the arc lengths can be
expressed in continuous form as:

LH∗ =

ξmax∫
0

√√√√ R∑
m,r=1

d〈fm〉
dξ

gmr
d〈fr〉
dξ

dξ =

ξmax∫
0

√
ḟ
>

g ḟ dξ, (8.18)

Lφ =

ξmax∫
0

√√√√ R∑
m,r=1

dλm
dξ

γmr
dλr
dξ

dξ =

ξmax∫
0

√
Λ̇
>
γγγ Λ̇ dξ (8.19)

where the overdot indicates differentiation with respect to ξ.
The symmetry of the Legendre transformation (8.11) also permits a

further insight. From (8.8) and (8.10), the metrics gmr or γmr within
the intrinsic differentials (8.14)-(8.15) can be substituted respectively by
∂λr/∂〈fm〉 or ∂〈fr〉/∂λm, to give:

dsH∗ =

√√√√ R∑
m,r=1

d〈fm〉
∂λr
∂〈fm〉

d〈fr〉 =

√√√√ R∑
r=1

dλr d〈fr〉 =
√
dΛ · df (8.20)

dsφ =

√√√√ R∑
m,r=1

dλm
∂〈fr〉
∂λm

dλr =

√√√√ R∑
r=1

dλr d〈fr〉 =
√
dΛ · df (8.21)

In consequence, the intrinsic differentials are equal, ds = dsH∗ = dsφ, and
so too are the arc lengths:

L = LH∗ = Lφ =

ξmax∫
0

√
Λ̇ · ḟ dξ, (8.22)

From a Riemannian geometric perspective, it therefore does not matter
whether one examines a system using its H∗(〈f1〉, 〈f2〉, ...) or φ(λ1, λ2, ...)
representation. The above identities – touched on by several work-
ers27,34,40,41 – are not surprising, since the Legendre transforms H∗ and
φ both have the character of entropy-related quantities, respectively indi-
cating the (generic) entropy of a system and the capacity of a system to
generate (generic) entropy.63 The quantity dΛ · df therefore expresses the
second differential of generic entropy produced due to incremental changes
in Λ and f (a generalised force-displacement or fluctuation-response rela-
tion). For all changes, dΛ · df ≥ 0 must be valid, to preserve a positive
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definite metric (whence Λ̇ · ḟ ≥ 0);12 this is in sympathy with a gener-
alised form of the second law of thermodynamics, namely “each net mean
increment of (generic) entropy produced along a path must be positive”.

One further consideration arises from the recognition that most proba-
bilistic systems involve quantised phenomena, which can only be approxi-
mated by the above continuous representation. For a system capable only
of discrete increments in line elements ∆sH∗ or ∆sφ associated with a min-
imum dissipation parameter ∆ξ (e.g. a minimum dissipation time if ξ = t),
the arc lengths are more appropriately given as:25

LH∗ =
M∑
υ=1

∆sH∗,υ =
M∑
υ=1

√
∆fυ

> gυ ∆fυ =
M∑
υ=1

√
ḟυ
>

gυ ḟυ ∆ξυ, (8.23)

Lφ =
M∑
υ=1

∆sφ,υ =
M∑
υ=1

√
∆Λυ

> γγγυ ∆Λυ =
M∑
υ=1

√
Λ̇υ
>
γγγυ Λ̇υ ∆ξυ (8.24)

where υ is the index of each increment. The last terms in (8.23)-(8.24) in-
voke the finite difference forms ḟυ = ∆fυ/∆ξυ or Λ̇υ = ∆Λυ/∆ξυ, strictly
valid only in the limits ∆ξυ → 0. The two discrete length scales (8.23)-
(8.24) are again equivalent, but there will most likely be some discrepancy
between their values due to their finite difference formulation.

8.3.2. Generalised Action Concepts and Least Action Bound

A Riemannian geometry can also be examined from a different perspec-
tive,15,17,25,33,41 discussed with reference to Figure 8.1; the following anal-
ysis largely follows that given by Nulton and coworkers,25 converted into
generic form. Although applied to H∗, an analogous derivation can be given
for the φ representation. Consider a system on the manifold of stationary
positions, subject to displacements {∆〈fr〉} in its stationary position. The
modified (generic) entropy H∗({〈fr〉 + ∆〈fr〉}) of the system can be ex-
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fm
fr

DH*

fr
fm

-H* Arc length

Manifold of
stationary
positions
(system)

Environment

Initial

Final

tot

Fig. 8.1. Illustration of Riemannian geometry concepts, for a two-constraint system

represented by H∗(〈fm〉, 〈fr〉) (for convenience the environment is shown as horizontal).

panded in a Taylor series about H∗({〈fr〉}):

H∗({〈fr〉+∆〈fr〉}) = H∗({〈fr〉}) +
R∑
r=1

λr|{〈fr〉}∆〈fr〉

+
1
2!

R∑
m,r=1

∂2H∗

∂〈fm〉∂〈fr〉

∣∣∣∣∣
{〈fr〉}

∆〈fm〉∆〈fr〉

+
1
3!

R∑
m,r,`=1

∂3H∗

∂〈f`〉∂〈fm〉∂〈fr〉

∣∣∣∣∣
{〈fr〉}

∆〈f`〉∆〈fm〉∆〈fr〉+ ...

(8.25)

where use is made of (8.7). The corresponding change in entropy of the
“reservoir” or “environment” of constant {λenvr }, by which this change is
effected, is given (exactly) by:17,25

Henv({〈fr〉+∆〈fr〉}) = Henv({〈fr〉}) +
R∑
r=1

λenvr |{〈fr〉}∆〈fr〉
env (8.26)

At the stationary state, λr = λenvr , whilst from the constraints (conser-
vation laws), ∆〈fr〉 = −∆〈fr〉env.25 Addition of (8.25)-(8.26) thus yields
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the total change in the entropy of the system and environment for the step
process:

∆H∗ =
1
2!

R∑
m,r=1

∂2H∗

∂〈fm〉∂〈fr〉

∣∣∣∣∣
{〈fr〉}

∆〈fm〉∆〈fr〉

+
1
3!

R∑
m,r,`=1

∂3H∗

∂〈f`〉∂〈fm〉∂〈fr〉

∣∣∣∣∣
{〈fr〉}

∆〈f`〉∆〈fm〉∆〈fr〉+ ...

(8.27)

Provided the manifold is smooth, continuous, continuously differentiable
(i.e., there are no phase changes in the neighbourhood) and the step sizes
{∆〈fr〉} are small, we can neglect the higher order terms in (8.27), giving:

∆H∗υ ≈
1
2

R∑
m,r=1

∆〈fm〉υ gmr,υ|{〈fr〉} ∆〈fr〉υ =
1
2

∆fυ
> gυ ∆fυ (8.28)

where the subscript denotes the υth equilibration step. In the φ repre-
sentation, the analogous form is obtained (in this case, giving the loss in
φ):

−∆φυ ≈
1
2

R∑
m,r=1

∆λm,υ γmr,υ|{λr} ∆λr,υ =
1
2

∆Λυ
> γγγυ ∆Λυ (8.29)

The total increase in entropy or decrease in potential of the system and
environment subject to a M -step process is therefore:

∆H∗tot =
M∑
υ=1

∆H∗υ ≈
M∑
υ=1

1
2

∆fυ
> gυ ∆fυ =

M∑
υ=1

1
2
ḟυ
>

gυ ḟυ ∆ξυ∆ξυ,

(8.30)

−∆φtot = −
M∑
υ=1

∆φυ ≈
M∑
υ=1

1
2

∆Λυ
> γγγυ ∆Λυ =

M∑
υ=1

1
2
Λ̇υ
>
γγγυ Λ̇υ ∆ξυ∆ξυ

(8.31)

Recognising ∆ξυ as the minimum dissipation parameter for the υth step
(e.g. the minimum dissipation time if ξ = t), one such term may be factored
out of each sum, to give the mean minimum dissipation parameter ε̄n for
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n ∈ {H∗, φ}.17,25 This gives ∆H∗tot = ε̄H∗JH∗ or −∆φtot = ε̄φJφ, with:

JH∗ =
M∑
υ=1

1
2
ḟυ
>

gυ ḟυ ∆ξυ, (8.32)

Jφ =
M∑
υ=1

1
2
Λ̇υ
>
γγγυ Λ̇υ ∆ξυ (8.33)

The summands 1
2 ḟυ

>
gυ ḟυ or 1

2Λ̇υ
>
γγγυ Λ̇υ in (8.32)-(8.33) can be viewed

as generalised energy terms, akin to the kinetic energy in mechanics, with
the metric gυ or γγγυ representing the “mass” and ḟυ or Λ̇υ the “velocity”.64

The terms JH∗ or Jφ can then be interpreted as the discrete generalised
action of the specified process,41 again by analogy with mechanicsb. From
the previous considerations (§8.3), the two action sums are equivalent, al-
though once again, discrepancies may emerge from their finite difference
formulation.

From the discrete form of the Cauchy-Schwarz inequality:(∑M

υ=1
aυ

2

)(∑M

υ=1
bυ

2

)
≥
(∑M

υ=1
aυbυ

)2

(8.34)

with aυ =
√
ḟ
>

gυ ḟ ∆ξυ or
√

Λ̇
>
γγγυ Λ̇ ∆ξυ and bυ = 1, it can be shown

that:25

ε̄nJn ≥
L2
n

2M
(8.35)

Physically, the number of steps is equal to M = ξmax/ε̄n, whence (8.35)
reduces to:17,25

ε̄nJn ≥
ε̄nL

2
n

2 ξmax
or Jn ≥

L2
n

2 ξmax
(8.36)

Eqs. (8.35)-(8.36) can be considered a generalised least action bound,41

applicable to all probabilistic systems amenable to analysis by Jaynes’
method. Its physical interpretation is that it specifies the minimum cost or
penalty, in units of dimensionless entropy per unit ξ, to move the system
from one stationary position (at ξ = 0) to another (at ξ = ξmax) along
the given path at the specified rates Λ̇ and/or ḟ . If the latter rates pro-
ceed infinitely slowly, the lower bound of the action is zero, indicating that
bCrooks41 applies the terms “energy” and “action” interchangeably; we consider that

the present definitions are more in keeping with those used in mechanics. Many authors
include the ε̄n term within Jn, but we here wish to preserve the mathematical structure

of a generalised action principle.
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the process can be conducted at zero cost; otherwise, it is necessary to
“do generalised work” to move the system along the manifold of stationary
positions within a finite parameter duration ξmax.

The generalised least action bound thus provides a lower bound for the
“transition cost” of a process (in entropy-related units). If the process is re-
versible, the cost would be zero, but no process can be reversible in practice.
Identification of this minimum cost is of paramount importance: there is no
point in undertaking expensive changes to the process, or initiating costly
social or political changes, in the attempt to do better than the minimum
predicted by (8.35)-(8.36). Taking a thermodynamic example, the method
can be applied to determine the minimum cost of industrial processes such
as work extraction from combustion, a question of fundamental importance
to human society. Most thermodynamics and engineering textbooks give
the Carnot limit as the theoretical limit of efficiency, but the limits imposed
by finite time thermodynamics are more restrictive (see §8.4.1).

The generalised least action bound therefore emerges from the Rieman-
nian geometry of the state space, and hence from somewhat different con-
siderations than the principle of least action employed in mechanics.64 We
consider that the two principles are connected, but are unable to examine
this topic further here. For further exploratory expositions, the reader is
referred to the work of Crooks,41 Caticha65 and Wang.67,68

The above discrete sums (8.30)-(8.31) can also be presented in inte-
gral form. Consider a system represented by H∗, subjected to a finite
change in the multipliers ∆λr due to movement of the reference environ-
ment. The incremental change in entropy is, again to first order (compare
(8.27)):17,25,33,41

dH∗ ≈ 1
2!

R∑
r=1

∆λrd〈fr〉 (8.37)

Substituting ∆λr =
R∑

m=1
gmr∆〈fm〉 from (8.8), and assuming a first order

decay process:

〈ḟm〉 =
〈fm〉 − 〈fm〉env

εH∗
=

∆〈fm〉
εH∗

(8.38)

where εH∗ is a minimum dissipation parameter (reciprocal rate constant),



October 12, 2009 14:52 World Scientific Review Volume - 9in x 6in SS22˙Master

Jaynes’ MaxEnt, Riemannian Metrics and Least Action Bound 297

(8.37) yields:

dH∗ =
1
2

R∑
m,r=1

〈ḟm〉 gmr d〈fr〉 εH∗ (8.39)

The total change in entropy ∆H∗tot =
∫ ξmax

0
dH∗ is then obtained as:

∆H∗tot =

ξmax∫
0

1
2
ḟ
>

g ḟ εH∗ dξ = ε̄H∗

ξmax∫
0

1
2
ḟ
>

g ḟ dξ = ε̄H∗JH∗ (8.40)

Similarly, in the φ representation, we obtain:

−∆φtot =

ξmax∫
0

1
2

Λ̇
>
γγγ Λ̇ εφ dξ = ε̄φ

ξmax∫
0

1
2

Λ̇
>
γγγ Λ̇ dξ = ε̄φJφ (8.41)

In the continuous representation, the process does not proceed by a series
of finite steps; instead, the reference variables continuously move ahead of
those of the system.17,25,33 However, we still see the influence of a finite
decay parameter εn, which on integration yields the mean parameter ε̄n.
Each Jn term above can be regarded as the action integral corresponding
respectively to (8.32)-(8.33). Based on the integral form of the Cauchy-
Schwarz inequality,62 it can be shown that the integral actions also satisfy
the least action bound (8.35)-(8.36), with Ln in integral form.17,25,33,41

Finally, for the least action bound (8.36) to achieve equality, the sum-
mands or integrands of the arc length Ln and action Jn must be con-
stant. This gives the simple result that for slow processes with constant
dissipation parameter εn = ε̄n, the minimum action (whence minimum
in ε̄nJn) is attained by a process which proceeds at a constant speed

ṡn =
√
ḟ
>

g ḟ =
√

Λ̇
>
γγγ Λ̇.28,29,33 For a constant metric, this is equiv-

alent to constant rates of change of the parameter vector ḟ and/or Λ̇. For
systems with a variable dissipation parameter ε(ξ), it was first considered
that the minimum is attained at the constant speed ds/dη, expressed in
the “natural” parameter units η = ξ/ε.28,29,33,40 This however oversim-
plifies the minimisation problem, which is better handled within a discrete
(stepwise) framework.25,35 As discussed in §8.4.1, such principles have been
widely applied to thermodynamic systems.
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8.3.3. Minimum Path Length Principle

The above discrete or continuous forms of the least action bound (8.35)-
(8.36) are based on consideration of a specified path on the manifold of
stationary positions, of arc length Ln. In many situations, we may wish
to determine the path of minimum arc length Ln,min – the geodesic – on
the manifold of stationary positions. From the calculus of variations, this
is given by the Euler-Lagrange equations:66

∂ṡH∗

∂f
− d

dξ

∂ṡH∗

∂ḟ
= 0 (8.42)

∂ṡφ
∂Λ
− d

dξ

∂ṡφ

∂Λ̇
= 0 (8.43)

where ṡH∗ =
√
ḟ
>

g ḟ and ṡφ =
√

Λ̇
>
γγγ Λ̇ are the integrands respectively

of LH∗ or Lφ (8.16)-(8.19). For two-dimensional parameters f ,Λ ∈ R2,
(8.42)-(8.43) can be reduced further in terms of the three unit normals
to the surface, giving the curve(s) on the manifold for which the geodesic
curvature vanishes.43,60,62 Depending on the specified problem, a geodesic
may not exist, or there may be multiple or il-defined solutions. Provided it
does exist, a geodesic leads to the double minimisation principle:

Jn ≥
L2
n

2 ξmax
≥ Ln,min

2

2 ξmax
(8.44)

where the right hand side indicates the absolute lower bound for the action,
irrespective of path. This principle has been applied to thermodynamic
systems, as will be discussed in §8.4.1.

8.4. Applications

As noted, the foregoing Riemannian geometric interpretation (§8.3) has
mainly been presented within an equilibrium thermodynamics context,15–43

although it has been applied to non-equilibrium thermodynamic and flow
systems,69–73 information coding74 and in economics.75 In the following
sections, the utility of Riemannian geometric properties and the least action
bound are demonstrated for two types of system: a thermodynamic system
at equilibrium, and a flow system at steady state.
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8.4.1. Equilibrium Thermodynamic Systems

The application of Riemannian geometric principles to equilibrium thermo-
dynamic systems has constituted a major new development over the past
three decades, forming an important plank of finite-parameter or (with
ξ = t) finite-time thermodynamics.21,34,35 Such analyses have progressed in
four overlapping stages:

• The initial studies by Weinhold10–14 and early work by Salamon, An-
dresen, Berry, Nulton and coworkers15,17,18,20,25,28,29 all examined a man-
ifold based on an internal energy representation U(X1, X2, ...), as a func-
tion of extensive variables Xr, which include the thermodynamic entropy
S. The resulting quantity ε̄UJU (in the present notation) was inter-
preted as an availability or exergy function, with (8.36) indicating the
most efficient path (defined by the minimum amount of work or minimum
loss of availability) required to move the equilibrium position of the sys-
tem.17,18 Such analyses complement the thermodynamic geometry used
by Gibbs,58,59 and fit well with the traditional heat-work framework of
19th century thermodynamics.

• Subsequently, following earlier pioneering works,69,76 the entropy
manifold S(X̃1, X̃2, ...) was examined from a Riemannian perspec-
tive,20,21,23,25,31–33,33,34,41,42 where X̃r are the new extensive variables,
of course related to the U(X1, X2, ...) representation by Jacobian trans-
formation.20 The quantity ε̄SJS was interpreted as a measure of energy
dissipation or entropy production, again providing a measure of process
efficiency. It was realised that the lower bound in (8.36) provides a for-
mal, mathematical definition of the degree of irreversibility of a transition
between equilibrium positions, with reversibility only for JS = 0 (a defini-
tion vastly preferable to the cumbersome word-play still used in thermo-
dynamics references; see the scathing criticism by Truesdell77). However,
the primacy of the entropy representation over that based on internal en-
ergy was not fully appreciated in these early studies. The applicability of
Riemannian geometry in other contexts – based directly on the MaxEnt
framework of Jaynes1,2 – is hinted at by Levine,27 but unfortunately was
not developed further at the time, nor, to the authors’ knowledge, in any
subsequent studies.

• Several studies have considered an entropy representation based on a met-
ric defined on a probability space {pi}, either from the Boltzmann princi-
ple76 or using a Shannon or relative entropy measure.22–24,26,27,37–39,41–43
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Several authors37–39,41–43) have extended this analysis, to establish a con-
nection with the Fisher information matrix78 and an “entropy differential
metric” of Rao.79 The analysis is also intimately connected with paths
in a space of square root probabilities, and thence to formulations of
quantum mechanics.37–39 These insights – not examined further here –
demand further detailed attention; they may well furnish an explanation
for the utility of extremisation methods based on the Fisher information
function in many physical problems.80

• Finally, several workers realised that Riemannian geometric principles can
be applied to Legendre-transformed representations, e.g. based on vari-
ous forms of the free energy F (conjugate to U) or the negative Planck
potential F/T (conjugate to S), as functions of the intensive variables (or
functions thereof).23,27,41,42 This approach offers particular advantages
for the analysis of real thermodynamic systems, in which the control pa-
rameters tend to be intensive rather than extensive variables (the canon-
ical ensemble), and for which the intensive variables do not exhibit sharp
transitions or singularities associated with phase changes, as is the case for
extensive variables.41 Furthermore, the resulting metric is equivalent to
the variance-covariance matrix of the constraints (8.10), and is therefore
connected to fluctuation-dissipation processes within the system.

For completeness, we demonstrate – for a microcanonical thermody-
namic system – how Riemannian geometric properties emerge as an inher-
ent feature of Jaynes’ MaxEnt formulation. Consider an isolated thermody-
namic system, containing molecules of possible energy levels εi and volume
elements Vj , subject to constraints on the mean energy 〈U〉 and mean vol-
ume 〈V 〉. We consider the joint probability pij of a particle simultaneously
occupying an energy level and volume element, giving the entropy function:

Heq = −
∑
i

∑
j

pij ln pij , (8.45)

where, without knowledge of any additional influences, we assume that each
joint level ij is equally probable (hence the priors qij cancel out). Eq. (8.45)
is maximised subject to the constraints:∑

i

∑
j

pij = 1, (8.46)

∑
i

∑
j

pijεi = 〈U〉, (8.47)
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∑
i

∑
j

pijVj = 〈V 〉, (8.48)

to give the equilibrium position:

p∗ij =
exp (−λUUi − λV Vj)∑

i

∑
j

exp (−λUUi − λV Vj)
=

1
Z

exp (−λUUi − λV Vj), (8.49)

where Z is the partition function. From the existing body of thermody-
namics, we can identify the Lagrangian multipliers as λU = 1/kT and
λV = P/kT , where k is the Boltzmann constant, T is absolute temperature
and P is absolute pressure. Eq. (8.49) and Jaynes’ relations (8.6)-(8.11)
and (8.13) then reduce to:

p∗ij =
1
Z
e−Ui/kT−PVj/kT , (8.50)

S∗ = kH∗eq = k lnZ +
〈U〉
T

+
P 〈V 〉
T

(8.51)

kΛeq =
[
∂S∗

∂〈U〉
,
∂S∗

∂〈V 〉

]>
=
[

1
T
,
P

T

]>
(8.52)

k geq =


∂2S∗

∂〈U〉2
,

∂2S∗

∂〈U〉∂〈V 〉
∂2S∗

∂〈V 〉∂〈U〉
,

∂2S∗

∂〈V 〉2

 =


∂

∂〈U〉

(
1
T

)
,

∂

∂〈U〉

(
P

T

)
∂

∂〈V 〉

(
1
T

)
,

∂

∂〈V 〉

(
P

T

)
 (8.53)

ψ = kφeq = −k lnZ = −S∗ +
〈U〉
T

+
P 〈V 〉
T

=
G

T
(8.54)

feq =
[
∂ψ

∂( 1
T )
,
∂ψ

∂(PT )

]>
=
[
〈U〉, 〈V 〉

]> (8.55)

γγγeq
k

=


∂2ψ

∂( 1
T )2

,
∂2ψ

∂( 1
T )∂(PT )

∂2ψ

∂(PT )∂( 1
T )
,

∂2ψ

∂(PT )2

 =


∂〈U〉
∂( 1

T )
,
∂〈V 〉
∂( 1

T )
∂〈U〉
∂(PT )

,
∂〈V 〉
∂(PT )

 (8.56)

k geq
γγγeq
k

= I (8.57)

where S∗ is the thermodynamic entropy at an equilibrium position, ψ is
the negative Planck potential81,82 (negative Massieu function83) and G is
the Gibbs free energy. By Jacobian transformation of variables, using the
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following material properties (susceptibilities):12,55,56

Heat capacity at constant pressure: CP =
(
∂〈H〉
∂T

)
P

(8.58)

Isothermal compressibility: κT = − 1
〈V 〉

(
∂〈V 〉
∂P

)
T

(8.59)

Coefficient of thermal expansion: α =
1
〈V 〉

(
∂〈V 〉
∂T

)
P

(8.60)

where 〈H〉 = 〈U〉 + P 〈V 〉 is the enthalpy, as well as the equality of cross-
derivatives (Maxwell relation):

∂〈V 〉
∂( 1

T )
=
∂〈U〉
∂(PT )

(8.61)

the ψ metric (8.56) reduces toc:

γγγeq
k

= T 〈V 〉

[
−κTP 2 + 2αPT − CPT

〈V 〉 , κTP − αT
κTP − αT, −κT

]
(8.62)

whence from (8.57):

kgeq =
1

T 2(α2T 〈V 〉 − κTCP )

[
κT , κTP − αT

κTP − αT, κTP
2 − 2αPT + CPT

〈V 〉

]
(8.63)

Using (8.52), (8.55) and (8.62)-(8.63), the (dimensional) arc lengths (8.18)-
(8.19) and action integrals (8.40)-(8.41) are obtained as:

L̆S∗ =

ξmax∫
0

√
ḟeq
>
kgeq ḟeq dξ =

ξmax∫
0

√
−CP Ṫ 2 + 2α〈V 〉T Ṫ Ṗ − κT 〈V 〉T Ṗ 2

k2T 2
dξ

(8.64)

J̆S∗ =

ξmax∫
0

1
2
ḟeq
>
kgeq ḟeq dξ =

ξmax∫
0

−CP Ṫ 2 + 2α〈V 〉T Ṫ Ṗ − κT 〈V 〉T Ṗ 2

2k2T 2
dξ

(8.65)

cThe first variance is given erroneously by Callen.55,56
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L̆ψ =

ξmax∫
0

√
Λ̇eq

> γγγeq
k

Λ̇eq dξ

=

ξmax∫
0

√
〈V 〉〈U̇〉

[
κT 〈U̇〉+ 2〈V̇ 〉(κTP − αT )

]
+ 〈V̇ 〉2

[
P 〈V 〉(κTP − 2αT ) + CPT

]
T 2〈V 〉(−CPκT + α2T 〈V 〉)

dξ

(8.66)

J̆ψ =

ξmax∫
0

1
2

Λ̇eq
> γγγeq

k
Λ̇eq dξ

=

ξmax∫
0

〈V 〉〈U̇〉
[
κT 〈U̇〉+ 2〈V̇ 〉(κTP − αT )

]
+ 〈V̇ 〉2

[
P 〈V 〉(κTP − 2αT ) + CPT

]
2T 2〈V 〉(−CPκT + α2T 〈V 〉)

dξ

(8.67)

Using (8.58)-(8.60), these two sets of measures can be shown to be equiva-
lent. The above equations must be integrated along the particular thermo-
dynamic path followed by the process, as defined by the velocities {Ṫ , Ṗ}
or {〈U̇〉, 〈V̇ 〉}. For a process which follows a pre-determined path, e.g. an
adiabatic, isothermal, isovolumetric or isopiezometric curve, this can be
simplified by expressing the velocities (e.g. Ṗ ) as functions of one indepen-
dent velocity (e.g. Ṫ ).

To comment on units: if the above quantities were calculated using the
“pure” metrics geq or γγγeq, in either case the line element dsn, arc length
Ln and the term ε̄nJn would be dimensionless (whence the action is in
reciprocal ξ units). Use of the “natural” metric kgeq, as conducted here,
gives the line element and arc length in

√
JK−1 and the action in JK−1ξ−1,

consistent with ∆S∗tot = ε̄S∗JS∗ being in entropy units. In contrast, use of
the “natural” metric γγγeq/k gives the line element and arc length in

√
KJ−1

and the action in KJ−1ξ−1. The latter case can be rescued by use of a

modified line element ds̆′ψ =
√
kΛ̇eq

> γγγeq
k kΛ̇eq dξ – as suggested by (8.52)

and (8.56) – giving the line element and arc length in
√
JK−1 and the

action in JK−1ξ−1. Thus in both the S∗ and ψ representations, the least
action bound (8.36) can be used to determine the minimum entropy cost
of a transition from one equilibrium position to another, along a specified
path on the manifold of equilibrium positions. As noted earlier, for slow
processes and constant εn, this is attained by a process which proceeds at a
constant thermodynamic speed ṡ28,29,33,40 (a more general result is available
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for rapid processes84). For variable εn and/or for stepwise phenomena, the
process should be divided into individual steps placed at equal distances
along the arc length traversed by the process, giving the so-called “equal
thermodynamics distance” principle.34–36 Such considerations have been
applied to the optimisation of a wide variety of engineering and industrial
batch and flow processes, including engine cycles, heat engines and pumps,
chemical reactors, distillation towers and many other systems.

A final important point is that the minimum path length (double min-
imisation) principle (8.44) – involving calculation of the geodesic – has been
applied to the analysis of equilibrium systems. In early work, this bound
was established by applying the calculus of variations directly to particu-
lar thermodynamic problems, without use of a metric.16,19 More recently,
such lower bounds have been examined for particular thermodynamic sys-
tems.34,43,100 In either case, for the entropy representation, this method
yields an absolute minimum entropy cost ∆S∗ ≥ ∆S∗min for a transition be-
tween two equilibrium positions at particular rates of change, irrespective
of the path. For cyclic or flow processes, this therefore gives a minimum
entropy production principle Ṡ ≥ Ṡmin, providing one of the key concepts
of finite-time (or finite-parameter) thermodynamics.

8.4.2. Flow Systems

We now consider a flow system consisting of a control volume, subject
to continuous flows of heat, particles and momentum, and within which
chemical reactions may take place. A few workers have examined such
non-equilibrium systems previously within a Riemannian context, includ-
ing for the Onsager linear regime69,70 and for extended irreversible thermo-
dynamics.71–73 A different perspective is provided here, based on a recent
analysis of a flow system from a Jaynesian perspective.63 This involves a
probabilistic analysis of each infinitesimal element of the control volume,
which experiences instantaneous values of the heat flux jQ,I , mass fluxes

jNc of each species c, stress tensor τJ and molar rate per unit volume ˆ̇
ξLd of

each chemical reaction d, where the indices I,J ,Ld,Nc ∈ {0,±1,±2, ...}.
We therefore consider the joint probability πI = πI,J ,{Ld},{Nc} of instan-
taneous fluxes through the element and instantaneous reactions within the
element, giving the (dimensionless) “flux entropy” function:

Hst = −
∑
I

πI lnπI , (8.68)
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Again assuming that each joint level I is equally probable, (8.68) is max-
imised subject to constraints on the mean values of the heat flux 〈jQ〉,
mass fluxes 〈jc〉, stress tensor 〈τ 〉 and molar reaction rates 〈 ˆ̇ξd〉 through or
within the element, as well as by the natural constraint (8.3). This gives
the steady state position of the system:

π∗I =
1
Z

exp
(
−ζQ · jQ,I −

∑
c

ζc · jNc − ζτ : τJ −
∑
d

ζd
ˆ̇
ξLd

)
(8.69)

where ζQ, ζc, ζτ and ζd are the Lagrangian multipliers associated with the
heat, particle, momentum and chemical reaction constraints, and Z = eζ0

is the partition function. By a traditional control volume analysis,85–88 the
multipliers can be identified as:63

ζQ = −θV
k

∇
(

1
T

)
(8.70)

ζc =
θV
k

[
∇
(

µc
McT

)
− F c

T

]
(8.71)

ζτ =
θV
k

∇
(
v

T

)>
(8.72)

ζd =
θV
k

Ad
T

(8.73)

where µc is the chemical potential of the cth constituent, Mc is the molar
mass of the cth constituent, F c is the specific body force on species c, v
is the mass-average velocity, Ad is the chemical affinity of the dth reaction
(< 0 for a spontaneous reaction), ∇ is the Cartesian gradient operator,
and θ and V respectively are characteristic time and volume scales of the
system. Generalising each component of the above multipliers as ζr and
constraints as 〈jr〉 with r ∈ {1, ..., R}, Jaynes’ relations (8.6)-(8.11) and
(8.13) reduce to:

H∗st = lnZ +
R∑
r=1

ζr〈jr〉 = −φst −
θV
k

ˆ̇σ (8.74)

Λst =
[
∂H∗st
∂〈j1〉

, ...,
∂H∗st
∂〈jR〉

]>
=
[
ζ1, ..., ζR

]> (8.75)

gst =


∂2H∗st
∂〈j1〉2

...
∂2H∗st

∂〈j1〉∂〈jR〉
...

. . .
...

∂2H∗st
∂〈jR〉∂〈j1〉

...
∂2H∗st
∂〈jR〉2

 =


∂ζ1
∂〈j1〉

...
∂ζR
∂〈j1〉

...
. . .

...
∂ζ1
∂〈jR〉

...
∂ζR
∂〈jR〉

 (8.76)
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φst = − lnZ = −H∗st +
R∑
r=1

ζr〈jr〉 = −H∗st −
θV
k

ˆ̇σ (8.77)

fst =
[
∂φst
∂ζ1

, ...,
∂φst
∂ζR

]>
=
[
〈j1〉, ..., 〈jR〉

]> (8.78)

γγγst =


∂2φst
∂ζ2

1

...
∂2φst
∂ζ1∂ζR

...
. . .

...
∂2φst
∂ζR∂ζ1

...
∂2φst
∂ζ2
R

 =


∂〈j1〉
∂ζ1

...
∂〈jR〉
∂ζ1

...
. . .

...
∂〈j1〉
∂ζR

...
∂〈jR〉
∂ζR

 (8.79)

gst γγγst = I (8.80)

where ˆ̇σ can be identified as the local entropy production per unit volume
(units of JK−1m−3s−1). A flow system subject to constant flux and re-
action rate constraints will therefore converge to a steady state position
defined by a maximum in the flux entropy H∗st and a minimum in the flux
potential φst. If these effects occur simultaneously, the system will con-
verge to a position of maximum ˆ̇σ, therefore providing a conditional, local
derivation of the maximum entropy production (MEP) principle,63 which
has been applied as a discriminator to determine the steady state of many
non-linear flow systems.89–97

In Onsager’s analysis of transport phenomena in the vicinity of equilib-
rium,98,99 the fluxes and reaction rates are considered to be linear functions
of the “forces” (the driving gradients and chemical affinities). In the present
terminology, this would be written as:

〈jr〉 = K
∑
m

L0
rmζm (8.81)

where L0
rm are the (constant) phenomenological coefficients at the zero-

gradient position (i.e., at equilibrium) and K = k/θV. In the present anal-
ysis, we do not claim linearity between 〈jr〉 and ζm, nor consider that the
system is “close to equilibrium”, but simply adopt the partial derivatives
∂〈jr〉/∂ζm within the metric γγγst (8.79) as a set of parameters (functions
of ζm) with which to analyse the system. The present analysis therefore
encompasses, but is not restricted to, Onsager’s linear regime. The diag-
onal and many off-diagonal terms can readily be identified as functions of
the conductivities (transport coefficients) and chemical reaction rate coef-
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ficents:88

Heat conductivity: κ̃ı = − ∂〈jQı〉

∂

(
∂T

∂

) (8.82)

Diffusion coefficient, species c: D̃c
ı = − ∂〈jcı〉

∂

(
∂Ĉc
∂

) (8.83)

Viscosity coefficient: µ̃ıκ` = − ∂〈τı〉

∂

(
∂vκ
∂`

) (8.84)

Rate coefficient, reaction d: k̃d =
∂〈 ˆ̇Ccd〉
∂Ĉc

= νcdMc
∂〈 ˆ̇ξd〉
∂Ĉc

(8.85)

where Ĉc is the concentration of species c (units of kg m−3; often used as

a proxy for the chemical potential µc), 〈 ˆ̇Ccd〉 is the mean rate of change
of concentration of species c in the dth reaction (units of kg m−3 s−1),
νcd is the stoichiometric coefficient of species c in the dth reaction (pos-
itive if a product), and the indices ı, , κ, ` ∈ {x, y, z}. The remaining
off-diagonal terms consist of the cross-process conductivity coupling coeffi-
cients and conductivity-reaction rate coefficients. The Riemannian metric
γγγst can therefore be regarded as a function of the material properties or
susceptibilities of a flow and chemical reactive system, in the same way that
the Riemannian metric for an equilibrium system γγγeq is a function of its
various susceptibilities, such as CP , κT and α (§8.4.1). As with equilibrium
systems, an abrupt change in a given component γst,rm with ζm can be
interpreted as the boundary of a phase change in the system. Notice also
that symmetry of γγγst yields a set of Maxwell-like relations:63

∂〈jr〉
∂ζm

=
∂〈jm〉
∂ζr

(8.86)

These apply to all infinitesimal volume elements of a flow system, not merely
those in the vicinity of equilibrium. Eqs. (8.86) considerably simplify the
set of parameters needed for analysis, from R2 to

(
R+1

2

)
coefficients; further

simplifications may be attainable in certain systems due to geometric and
tensor symmetries.88

The above relations (8.74)-(8.79) can now be applied to develop a Rie-
mannian description of a flow system on the manifold of steady state po-
sitions. In terms of the generalised derivatives, the (dimensionless) arc
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lengths (8.18)-(8.19) and action integrals (8.40)-(8.41) are obtained as:

Lst =

ξmax∫
0

√
ḟst
>

gst ḟst dξ =

ξmax∫
0

√
Λ̇st
>
γγγst Λ̇st dξ

=

ξmax∫
0

√
Λ̇st · ḟst dξ =

ξmax∫
0

√√√√ R∑
r=1

∂ζr
∂ξ

∂〈jr〉
∂ξ

dξ

(8.87)

Jst =

ξmax∫
0

1
2
ḟst
>

gst ḟst dξ =

ξmax∫
0

1
2

Λ̇st
>
γγγst Λ̇st dξ

=

ξmax∫
0

1
2
Λ̇st · ḟst dξ =

1
2

ξmax∫
0

R∑
r=1

∂ζr
∂ξ

∂〈jr〉
∂ξ

dξ

(8.88)

where, as shown, the two alternative H∗st and φst measures are equivalent.
Once again, these equations must be integrated along the particular path
taken between the initial and final steady state positions.

To comment on units: since the above quantities are calculated using
the “pure” metrics gst or γγγst, the resulting line element dsst, arc length
Lst and the term ε̄stJst are dimensionless. Use of the “natural” metric
Kgst, for K = k/θV, therefore gives the line element and arc length in√
JK−1m−3s−1 and the action in JK−1m−3s−1ξ−1, thereby giving ε̄stJst

in units of entropy production per unit volume. Similarly, use of the “nat-
ural” metric γγγst/K in conjunction with the dimensional constraint vector
KΛ̇st gives the line element and arc length in

√
JK−1m−3s−1 and action

in JK−1m−3s−1ξ−1, again giving ε̄stJst in units of entropy production per
unit volume. The least action bound (8.36) therefore yields a minimum
entropy production principle, which sets a lower bound for the entropy pro-
duction associated with movement of a flow system from one steady state
position to another along a specified path. From the previous analysis, this
involves two separate minimisation principles:

• If the path is specified, the process of minimum entropy production will
be one which proceeds at constant speed ṡ, assuming a slow process and
a constant dissipation parameter ε. Alternately, if the dissipation param-
eter ε is not constant, the minimum entropy production process will be
given by a constant arc length speed, in accordance with a steady state
analogue of the “equal thermodynamic distance” principle.25,34–36

• If the path is not specified or can be varied, an absolute lower bound for
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the entropy production is given by the geodesic in steady state parameter
space, in accordance with the methods of §8.3.3.

Although they share a similar name, the minimum entropy production prin-
ciple derived herein is quite different to that of Prigogine,86 which concerns
the selection of a steady state position relative to possible non-steady state
positions, and which only applies to the Onsager linear regime. Similarly,
it differs from the minimum entropy production principle obtained by the
application of Riemannian geodesic calculations to the manifold of equilib-
rium positions, discussed at the end of §8.4.1.16,19,34,43,100 The minimum
principle derived herein is more general than both these principles, being
applicable beyond the set of equilibrium positions, and also well outside the
linear regime of non-equilibrium thermodynamics. In turn, it is based on
the even broader generic formulation of the least action bound given herein,
applicable to any system which can be analysed by Jaynes’ method.

8.5. Conclusions

In this study, the manifold of stationary positions inferred by Jaynes’ Max-
Ent and MaxREnt principles – considered as a function of the moment
constraints or their conjugate Lagrangian multipliers – is endowed with
a Riemannian geometric description, based on the second differential ten-
sor of the entropy or its Legendre transform (negative Massieu function)
obtained from Jaynes’ method. The analysis provides a generalised least
action bound applicable to all Jaynesian systems, which provides a lower
bound to the cost (in generic entropy units) of a transition between in-
ferred positions along a specified path, at specified rates of change of the
control parameters. The analysis therefore extends the concepts of “finite
time thermodynamics”, developed over the past three decades,10–43 to the
generic Jaynes domain, providing a link between purely static (stationary)
inferred positions of a system, and dynamic transitions between these po-
sitions (as a function of time or some other coordinate). If the path is
unspecified, the analysis gives an absolute lower bound for the cost of the
transition, corresponding to the geodesic of the Riemannian hypersurface.

The analysis is then applied to (i) an equilibrium thermodynamic sys-
tem subject to mean internal energy and volume constraints, and (ii) a flow
system at steady state, subject to constraints on the mean heat, mass and
momentum fluxes and chemical reaction rates. The first example recovers
the minimum entropy cost of a transition between equilibrium positions,
a widely used result of finite-time thermodynamics. The second example
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leads to a new minimum entropy production principle, for the cost of a
transition between steady state positions of a flow system. The analyses
reveal the tremendous utility of Jaynes’ MaxEnt and MinXEnt methods
augmented by the generalised least action bound, for the analysis of prob-
abilistic systems of all kinds.
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Appendix 1: Riemannian Geometric Considerations

It is necessary to examine several salient features of the Riemannian ge-
ometric interpretation adopted herein.60,62 Consider a hypersurface rep-
resented by the position vector x = [x1, ..., xn]>, embedded within the
n-dimensional space defined by the coordinates (x1, ..., xn). For analy-
sis, this hypersurface can be converted to the parametric representation
x(u) = [x1(u), ..., xn(u)]>, where u = [u1, ..., un−1]> is the (n − 1)-
dimensional vector of parameters uj , consisting of coordinates on the hy-
persurface. The first fundamental form of this geometry is defined by the
metric:60,62

dς2 = dx · dx =
n−1∑
i=1

n−1∑
j=1

aijduiduj = du> a du (A.1)

in which, by elementary calculus, the components of the tensor a can be
shown to be:

aij =
∂x

∂ui
· ∂x
∂uj

(A.2)

Accordingly, a is symmetric. By Euclidean geometry, (A.1) can be used to
calculate distances between two points a and b on the hypersurface x, on
the path defined by u:

Lx =
∫ b

a

dς =
∫ b

a

√
du> a du =

∫ ξb

ξa

√
du̇> a du̇ dξ (A.3)
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where the overdot indicates the derivative with respect to the path param-
eter ξ. The second fundamental form of the hypersurface is then defined
by:60,62

−dx · dn =
n−1∑
i=1

n−1∑
j=1

bijduiduj = du> b du (A.4)

where n is the unit normal vector to the hypersurface. By differential
calculus, it can be shown that:

bij =
∂x

∂ui∂uj
· n (A.5)

The second fundamental form is not considered as a metric with which
to calculate distances, but is used to examine the tangency and curvature
properties of the manifold x.60,62

In the present study, we wish to adopt the Jaynesian matrix g or γγγ
as a Riemannian metric tensor for the calculation of arc lengths on the
R-dimensional stationary state hypersurface, embedded in the (R + 1)-
dimensional space defined by (H∗, {〈fr〉}) or (φ, {λr}). We therefore adopt
the (somewhat peculiar) approach in which the coordinates [x2, ..., xR+1]>

are selected as the surface parameters [u1, ..., uR]>; i.e. with the hyper-
surface xH∗ = [H∗, 〈f1〉, ..., 〈fR〉]> parameterised by uH∗ = f and with
xφ = [φ, λ1, ..., λR]> parameterised by uφ = Λ. Two necessary conditions
for the use of g or γγγ as metric tensors is that they be symmetric and pos-
itive definite (or semi-definite); since they constitute Hessian matrices of
the concave generic entropy H∗ or convex potential function φ, these condi-
tions are satisfied, not only in thermodynamic applications but within the
generic Jaynes formulation (with semi-definite behaviour only at singular-
ities).6,15 However, g and γγγ are related to a second, rather than a first,
fundamental form.15,31 For g or γγγ to be considered as metric tensors, they
must be able to generate the first fundamental form of some position vector
which describes the hypersurface. In mathematical terms, from (A.1):

ds2
H∗ = df> g df = duH∗

> aH∗ duH∗ , (A.6)

ds2
φ = dΛ> γγγ dΛ = duφ

> aφ duφ (A.7)

From (8.8), (8.10), (8.13) and (A.2), taking advantage of tensor symmetries,
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the metric components must therefore satisfy:

gmr = aH∗,mr =
∂ω

∂〈fm〉
· ∂ω

∂〈fr〉
=

∂2H∗

∂〈fm〉∂〈fr〉
=

∂λr
∂〈fm〉

(A.8)

γmr = aφ,mr =
∂Ω
∂λm

· ∂Ω
∂λr

=
∂2φ

∂λm∂λr
=
∂〈fr〉
∂λm

(A.9)

where ω(f) and Ω(Λ) are new R-dimensional position vectors, which from
(A.10), are related by:

aH∗ aφ = I, (A.10)

In consequence, the metrics (8.14)-(8.15) and (8.20)-(8.21) and arc lengths
(8.16)-(8.19) used herein are not measures of distance on the stationary
state hypersurface defined by H∗({〈fr〉}) or φ({λr}), but rather, on the
transformed hypersurface given by ω or Ω. In addition to the symmetry and
positive definiteness conditions, it is therefore also necessary and sufficient
that the hypersurface defined by ω or Ω exists within RR, is continuous
and continuously differentiable – at least up to first order – except in the
neighbourhood of singularities.
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speed, and optimum path to minimize entropy production, J. Chem. Phys.
105(24) 11220-11225 (1996).

41. G.E. Crooks, Measuring thermodynamic length, Phys. Rev. Lett. 99 100602
(2007).

42. E.H. Feng, G.E. Crooks, Far-from-equilibrium measurements of thermody-
namic length, Phys. Rev. E 79 012104 (2009).

43. D.C. Brody, D.W. Hook, Information geometry in vapour-liquid equilib-
rium, J. Phys. A: Math. Theor. 42 023001 (33pp) (2009).
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tive den Sätzen über das Wärmegleichgewicht, Wien. Ber. 76, 373-435
(1877); English transl.: J. Le Roux (2002) 1-63 http://www.essi.fr/∼leroux/.
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