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The Casimir effect for two parallel slabs immersed in an ideal Fermi sea is investigated at both zero and nonzero
temperatures. It is found that the Casimir effect in a Fermi gas is distinctly different from that in an electromagnetic
field or a massive Bose gas. In contrast to the familiar result that the Casimir force decreases monotonically with the
increase of the separation L between two slabs in an electromagnetic field and a massive Bose gas, the Casimir force in
a Fermi gas oscillates as a function of L. The Casimir force can be either attractive or repulsive, depending sensitively
on the magnitude of L. In addition, it is found that the amplitude of the Casimir force in a Fermi gas decreases
with the increase of the temperature, which also is contrary to the case in a Bose gas, since the bosonic Casimir force
increases linearly with the increase of the temperature in the region T < Tc, where Tc is the critical temperature of the
Bose–Einstein condensation.
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1. Introduction

The Casimir effect is an attractive interaction
between two closely spaced parallel plates caused
by the vacuum fluctuation of the electromagnetic
field. About 10 years after its prediction in 1948
by Casimir,[1] the Casimir force was measured ex-
perimentally by Spaarnay.[2] More accurate measure-
ment of the Casimir force was performed in a series of
modern experiments[3−7] starting with Lamoreaux’s
landmark experiment in 1997.[3] In theoretical devel-
opments, a great deal of effort has been devoted to
the calculation of the Casimir energy or the Casimir
force for different geometries and different boundary
conditions,[8−13] including those real structures of the
boundaries. Its importance for practical applications
is now becoming more widely appreciated in quan-
tum field theory, Bose–Einstein condensates, atomic
and molecular physics, gravitation and cosmology, and
mathematical physics.

Generally, the presence of boundaries inside any
wave field can cause Casimir-like effects if the bounded
space is smaller than the maximum wavelength of the
wave field. For example, an acoustic Casimir force

between two parallel rigid plates due to the radiation
pressure of the band-limited acoustic noise was ex-
plored both theoretically and experimentally.[14] Sim-
ilarly, it may be expected that Casimir-like effects may
occur in a quantum gas because of the wave charac-
ter of the gas atoms. In Ref. [15], the Casimir force
between two slabs immersed in a perfect Bose gas
was calculated for various boundary conditions. It
was found that the Casimir force has the standard
asymptotic form with universal Casimir terms below
the bulk critical temperature of Bose–Einstein conden-
sation (BEC) Tc and vanishes exponentially above Tc.
A question naturally comes to mind: what happens if
the Bose gas is replaced by a Fermi gas?

The Casimir effect in fermionic fields has been ex-
tensively investigated in the literature. In this connec-
tion, a large amount of work has been devoted to the
calculation of the Casimir interaction between two im-
purities or two bubbles immersed in a Fermi sea,[16−18]

which is particularly relevant to the physics of neutron
stars[19] and quark gluon plasmas.[20] In most of those
investigations, the Casimir force was calculated uti-
lizing the geometry-dependent density of states,[16,17]
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in which the corrections arising from the presence of
obstacles had been taken into account. As opposed to
those previous studies, exact numerical calculations
will be employed in the present paper to calculate the
Casimir force between two slabs immersed in a Fermi
sea.

2. Fermionic Casimir effect at zero
temperature

We consider two large parallel slabs immersed in a
sea of perfect Fermi gas. The two slabs are separated
along the z axis by a small distance L ¿

√
A, where

A is the area of the slab. The system of the fermions
between the two slabs (confined system) is in thermo-
dynamic equilibrium with the Fermi sea outside the
slabs (surroundings). The single-particle energy of the
confined system is given by

ε(k) =
~2

2m
(k2

x + k2
y + k2

z), (1)

where m is the mass of the particle, ~ is the reduced
Planck constant and k is the wave vector. For the
problem under consideration, kx and ky are taken to
be continuous, and kz is quantized as

kz =
πn

L
, (2)

with n = 1, 2, 3, . . . for the Dirichlet boundary condi-
tion (DBC), n = 0, 1, 2, . . . for the Neumann bound-
ary condition (NBC), and n = 0, ±2, ±4, . . . for the
periodic boundary condition (PBC).

We first consider the case at zero temperature
(T = 0 K). The thermodynamic potential of the ideal
Fermi gas at 0 K is given by

Ω = −
∑

k

[εF − ε(k)]θ (εF − ε(k)), (3)

and can be derived as

Ω =


−Ak2

FεF

8π

J1∑
n=1,0

[
1 −

(
πn

kFL

)2]2

, for DBC and NBC,

−Ak2
FεF

8π

J2∑
n=−J2

[
1 −

(
2πn

kFL

)2]2

, for PBC,

(4)

where kB is the Boltzman constant, εF is the Fermi energy of the confined system, which is equal to that of
the surroundings in the state of equilibrium, kF =

√
2mεF/~, J1 and J2 are the integer parts of kFL/π and

kFL/(2π), respectively, and the summation
∑J1

n=1,0 starts from 1 for DBC and 0 for NBC. The degeneracy
related to the internal structure of the particles is assumed to be one for simplicity. From Eq. (4), the Casimir
force per unit area can be derived as

PC(L) = − 1
A

[(
∂Ω

∂L

)
εF,A

− lim
L→∞

(
∂Ω

∂L

)
εF,A

]

=
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(
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− 2
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(
kFL

π
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, for DBC and NBC,
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(2n)2
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(
2πn

kFL

)2]
− 2

15

(
kFL

π

)3
}

, for PBC.

(5)

Based on Eq. (5), we can understand the depen-
dence of the Casimir force on the separation of the
two slabs. For example, in the case of DBC, the scaled
Casimir pressure can be directly derived from Eq. (5)
to be

PC

PS0
=

5
2

J1(J1 + 1/2)(J1 + 1)
(kFL/π)3

×
[
1 − 3J2

1 + 3J1 − 1
5(kFL/π)2

]
− 1, (6)

where PS0 is the pressure of the surroundings at 0 K

and is given by PS0 = εFk3
F/(15π2).[21] In Eq. (6),

the numerators contain J1 and thus remain constants

over each integer interval, while the denominators con-

tain (kFL/π)3 and (kFL/π)2 and increase as kFL/π

increases. For kFL/π < 1, J1 = 0 and PC/PS0 = −1,

which means that the Casimir force per unit area is

equal to the pressure of the surroundings. This re-
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sult is expected. When kFL/π < 1, the energy of the
lowest level of the confined system ε0 = π2~2/(2mL2)
is larger than the Fermi energy εF = ~2k2

F/(2m), so
there will be no particle and hence no pressure in the
space between the two slabs. For kFL/π ≥ 1, PC/PS0

has a minimum

PC, min

PS0
= −5J2

1 − 1
4J4

1

(7)

at kFL/π = J1 (J1 = 1, 2, 3, . . . ) and a maximum

PC, max

PS0
=

J1(J1 + 1/2)(J1 + 1)
(J2

1 + J1 − 1/3)3/2
− 1 (8)

at kFL/π =
√

J2
1 + J1 − 1/3 in each integer interval

from J1 to J1 + 1. Thus, PC/PS0 as a function of
kFL/π will oscillate with the period of ∆(kFL/π) = 1,
as shown in Fig. 1. The property is not seen in the
case of an electromagnetic field or a massive Bose gas,
where the Casimir force is known to be a monotoni-
cally decreasing function of L. In each integer inter-
val J1 ≤ kFL/π < J1 + 1, PC/PS0 may vary between
PC, min/PS0 < 0 and PC, max/PS0 > 0. It indicates
that the Casimir force can be attractive or repulsive,
alternating periodically with the increase of the sep-
aration between the two slabs. This gives rise to an-
other important difference in the Casimir effects be-
tween the Bose and the Fermi gases, as the Casimir
force for the former can only be attractive.[15]

In the cases of NBC and PBC, the dependence of
the Casimir force on the separation between the two
slabs can be similarly discussed. It is found that the

curve of PC/PS0 versus kFL/π in the case of NBC is
the same as that in the case of DBC, while in the case
of PBC, PC/PS0 oscillates as a function of kFL/π with
a doubled period, as shown in Fig. 1.
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Fig. 1. Casimir forces versus separation between the two
bounding slabs for different boundary conditions at zero
temperature. Panels (a) and (b) give the results at small
and large separations, respectively.

It is important to note that the particle density
of the confined system is generally different from that
of the surroundings when they are in thermodynamic
equilibrium at constant temperature and chemical po-
tential. According to Eq. (4), the difference in parti-
cle density between the confined system and the sur-
roundings can be obtained as

∆ρ(L) = − 1
A

[
1
L

(
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∂εF

)
A,L

− lim
L→∞

1
L

(
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)
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]

=
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F

4πL
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− 2

3

(
kFL

π

)}
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k2
F
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n=−J2
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(
2πn

kFL

)2
]
− 2

3

(
kFL

π

)}
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(9)

By using Eq. (9), the curves of ∆ρ/ρS0 versus
kFL/π for different boundary conditions can be plot-
ted, as shown in Fig. 2, where ρS0 is the particle den-
sity of the surroundings at 0 K and is given by ρS0 =
k3
F/(6π2).[21] It is found that the curves each display

a sawtooth-like oscillation that becomes smoother as

L increases. The values of ∆ρ/ρS0 are sensitive to the

boundary conditions: ∆ρ/ρS0 is negative for DBC,

positive for NBC, and varies alternately from positive

to negative for PBC. When L → 0, ∆ρ/ρS0 = −1 for

DBC, and ∆ρ/ρS0 → ∞ for NBC and PBC.
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Fig. 2. Difference between the density of fermions be-
tween the two slabs and that outside the two slabs versus
separation of the slabs for different boundary conditions
at zero temperature. Panels (a) and (b) give the results
at small and large separations, respectively.

3. Fermionic Casimir effect at
nonzero temperatures

We now turn to the cases of nonzero temperatures
and first consider the case of the Dirichlet boundary
condition, for which the thermodynamic potential of
the confined system at nonzero temperatures can be
expressed as

Ω = −kBT
∑

k

ln[1 + z e−βε(k)]

= −Ak2
T kBT

4π

∞∑
n=1

f2

(
z exp

[
−

(
πn

kT L

)2])
, (10)

where kT =
√

2mkBT/~, z = eµ/(kBT ) is the fugac-
ity, µ is the chemical potential of the confined system,
which is equal to that of the surroundings in the state
of equilibrium, fν(x) is the Fermi integral

fν(x) =
1

Γ(ν)

∫ ∞

0

tν−1dt

x−1 et + 1
, (11)

and Γ(x) is the Gamma function. According to
Eq. (10), we can find the Casimir force per unit area
and the difference in particle density between the con-
fined system and the surroundings to be

PC(L, T ) =
πkBT

2L3

[ ∞∑
n=1

n2f1

(
z exp

[
−

(
πn

kT L

)2])

−π1/2

4

(
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)3

f5/2(z)
]

(12)

and

∆ρ(L, T ) =
k2

T

4πL

[ ∞∑
n=1

f1

(
z exp

[
−

(
πn

kT L

)2])
− π1/2

2
kT L

π
f3/2(z)

]
, (13)

respectively, where the fugacity z is determined by

f3/2(z) =
(

TF

T

)3/2 4
3π1/2

, (14)

and TF = εF/kB is the Fermi temperature. The de-
pendences of PC(L, T ) and ∆ρ(L, T ) on parameters
L and T can be obtained from Eqs. (12)–(14) using a
numerical calculation.

Figure 3 shows the curves of PC/PS0 varying with
kFL/π for different values of the scaled temperature
T/TF. It can be seen that the amplitude of PC/PS0

decreases with the increasing temperature. This prop-
erty is different from that for the Bose gas, in which
the Casimir force increases linearly with the increase
of the temperature in the region T < Tc.[15] Compared
with the case T = 0 K, the curves of PC/PS0 versus
kFL/π at nonzero temperatures become smooth due
to thermal excitation.
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Fig. 3. Casimir force versus separation between the
two slabs at (a) T/TF = 0, (b) T/TF = 0.02, and (c)
T/TF = 0.04.

Figure 4 shows the curves of PC/PS0 varying with
T/TF for different values of parameter kFL/π. It is
observed that the curves can be significantly changed
for a slight variation of kFL/π. It indicates that the
Casimir force is quite sensitive to the separation be-
tween the slabs.
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Fig. 5. Difference between the density of fermions be-
tween the two slabs and that outside the two slabs as a
function of the separation of the slabs at (a) T/TF = 0,
(b) T/TF = 0.02, and (c) T/TF = 0.04.

Figure 5 gives the curves of ∆ρ/ρS0 versus kFL/π
for different values of parameter T/TF, which are ob-
tained using Eqs. (13) and (14). It can be seen that
the oscillation of ∆ρ/ρS0 with kFL/π gradually dis-
appears with the increase of the temperature. In ad-
dition, it is found that for a given value of kFL/π,
the values of ∆ρ/ρS0 are about the same for different
values of T/TF. This implies that the difference in
particle density between the confined system and the
surroundings is insensitive to the temperature in the
low-temperature region.

The fermionic Casimir effects at nonzero temper-
atures are quite similar for the cases of NBC and PBC.
Thus, they are not listed in detail here.

4. Conclusion

We study the Casimir effect for two parallel slabs
immersed in a sea of perfect fermions. Some important
results obtained are as follows. (i) The Casimir force
in the ideal Fermi gas oscillates with the increase of the
separation between the two slabs, which is distinctly
different from that in the case of an electromagnetic
field or a massive Bose gas. (ii) The fermionic Casimir
force can be either attractive or repulsive, which is
another important difference in the Casimir effect be-
tween the Bose and the Fermi gases. (iii) The ampli-
tude of the Casimir force decreases with the increase of
the temperature. This is opposite to that for the Bose
gas, in which the Casimir force increases linearly with
the increase of the temperature in the region T < Tc.
(iv) The difference in particle density between the con-
fined system and the surroundings is sensitive to the
separation between the two slabs and the boundary
conditions but is insensitive to the temperature in the
low-temperature region.
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