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Casimir companion: An invariant of motion for Hamiltonian systems
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In this paper an invariant of motion for Hamiltonian systems is introduced: the Casimir companion. For systems
with simple dynamical algebras (e.g., coupled spins, harmonic oscillators) our invariant is useful in problems that
consider adiabatically varying the parameters in the Hamiltonian. In particular, it has proved useful in optimal
control of changes in these parameters. The Casimir companion also allows simple calculation of the entropy of
nonequilibrium ensembles.
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I. INTRODUCTION

Classical mechanics as well as quantum mechanics has to
solve equations of motion. Finding invariants simplifies these
equations. A useful tool to find these invariants is the theory of
Lie algebras. Given the Lie algebra associated to the equations
of motion, straightforward invariants exist. These so-called
Casimir invariants are familiar from quantum treatments of
angular momentum.

The Casimir operator was introduced by Hendrik Casimir
in 1931 [1]. It is a distinguished element of the enveloping
algebra of a Lie algebra that commutes with every element of
the algebra. This feature makes it a constant of the motion for
any problem having the symmetry of the Lie algebra.

Recent work on the optimal control of quantum systems
with low dimensional dynamical algebras [2–14] has turned
up a closely related invariant which we here dub the Casimir
companion X [15–18]. It appears to be as useful for these
problems as the Casimir operator is for problems with
traditional, static symmetries. X is calculated using the formula
for the Casimir operator but inserting expectation values
instead of operators.

In the optimal control problems mentioned above [15,16],
the constancy of X reduces the dimension of the problem from
3 to 2—a feature which greatly simplifies the optimal control
and facilitates its understanding and interpretation [17,18].

A Hamiltonian problem with Hamiltonian H is said to have
a dynamical algebra [19] provided H can be expressed as a
linear combination of elements of the Lie algebra,

H =
N∑

i=1

hi(t)Bi . (1)

It then follows that the dynamics of (say) the energy can be
reduced to the dynamics of a basis for the algebra and this
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latter dynamics follows from the commutation relations

[Bi ,Bj ] =
N∑

k=1

c
k

ij Bk, (2)

defining the algebra.
Optimal control involving only the expectation values

of (say) the energy are nicely handled in the Heisenberg
representation. The dynamics of any operator A are then

dA
dt

= i

h̄
[H,A] + ∂A

∂t
. (3)

Taking the trace with the (constant) density matrix leads to
ordinary differential equations for the expectation value of A.
To describe the dynamics of any operator expressible in terms
of the Lie algebra, the required number of coupled differential
equations is just the dimension of the algebra. The invariance
of the Casimir companion X for these problems reduces the
dimension by 1. Furthermore the value of X is related to the
entropy and the energy of the system in a way that allows us
to express the von Neumann entropy for nonequilibrium states
in terms of X.

II. THE CASIMIR COMPANION

Consider a system which is describable by a finite set of
operators {Bi}Ni=1 forming a closed Lie algebra and where the
Hamiltonian is a linear combination of these operators. The
equations of motion,

dBj

dt
=

∑
k

γ
k

j (t)Bk, (4)

are easily seen to be closed under this Lie algebra, provided
the basis {Bi}Ni=1 is not explicitly time dependent. Note that
this applies even when parameters in the Hamiltonian are
varied. The not explicit time dependence in the basis is not
real a restriction because one can always transform the time
dependence from the basis to the coefficients, leading to a
time-dependent system matrix γ

k

j (t) and vice versa. This
matrix can be calculated directly, knowing the time-dependent
coefficients hi(t) of the linear expansion in Eq. (1) and the
time-independent structure constants c

k

ij of the Lie algebra.
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From Eqs. (3) and (4) we get

γ
k

j (t) =
N∑

i=1

i

h̄
hi(t)c k

ij . (5)

The metric g of the algebra can be calculated directly from the
structure constants:

gik =
N∑

m,n=1

c m
in c n

km . (6)

Now the Casimir invariant C [20] is completely determined,

C =
N∑

i,k=1

gikBkBi , (7)

with gik = [g−1]ki . In addition a second dimensionless invari-
ant, the Casimir companion X, naturally exists:

X =
N∑

i,k=1

gik〈Bk〉〈Bi〉. (8)

Because of the linearity of Eq. (4), the expectation values
Bi = 〈Bi〉 evolve according to the same equations of motion
as the operators Bi . The invariance of X follows,

Ẋ =
N∑

i,k=1

gik(〈Ḃk〉〈Bi〉 + 〈Bk〉〈Ḃi〉)

=
N∑

i,k=1

2gik〈Ḃk〉〈Bi〉 =
N∑

k,n,s=1

2i

h̄
hn(t)c s

nk 〈Bs〉〈Bk〉

=
N∑

k,n,m=1

2i

h̄
hn(t)cnkm〈Bm〉〈Bk〉

=
N∑

k,n,m=1

i

h̄
hn(t)〈Bm〉〈Bk〉(cnkm + cnmk) = 0, (9)

where we have used the symmetry of the metric, the anti-
symmetry of the structure constants, and the Jacobi identity.
The two invariants 〈C〉 and X are connected by the system’s
covariance matrix,

X = 〈C〉 −
N∑

i,k=1

gikCov(Bk,Bi), (10)

with

Cov(Bi ,Bj ) = 1
2 〈BiBj + BjBi〉 − 〈Bi〉〈Bj 〉. (11)

As we shall see from the examples below, for equilibrium
states this new invariant X reduces to the energy of the system
up to a rescaling factor. Away from equilibrium it measures
the stored but marked-for-loss portion of the energy that has
accumulated due to quantum friction [21–23]. This energy
will thermalize if the system is placed in contact with any
thermal reservoir [24]. Before such contact, the right control
could recoup this energy. In fact the optimal control solutions
found with the aid of X [16–18] require temporary storage and
retrieval of energy in such frictional modes, thereby achieving
so-called shortcuts to adiabaticity [8–16].

III. EXAMPLE 1: QUANTUM HARMONIC OSCILLATOR

The oscillator evolves according to the Hamiltonian

H = P2

2m
+ m

2
ω(t)2Q2, (12)

where P , Q, m, and ω(t) are the momentum, position
operators, mass of the particle, and frequency of the oscillator,
respectively. Adding the operators L and C closes the finite
Lie algebra induced by H,

L = P2

2m
− m

2
ω(t)2Q2 (13)

C = ω(t)

2
(QP + PQ). (14)

Using the commutation relations (from here on h̄ = 1 for the
rest of the paper)

[H,L] = −i2ωC [L,C] = i2ωH [C,H] = −i2ωL,

(15)

the metric reads

[gik] = 8 ω(t)2

⎛
⎜⎝

1 0 0

0 −1 0

0 0 −1

⎞
⎟⎠ . (16)

This metric is explicitly time dependent, because of the
explicitly time-dependent basis {H,L,C}. As remarked above,
one could transform this basis into a static one, e.g.,
{Q2,P2,(QP + PQ)/2}. Using Eq. (8) with E = 〈H〉, L =
〈L〉, and C = 〈C〉, the Casimir companion is

X = 〈H〉2 − 〈L〉2 − 〈C〉2

8 ω2
= E2 − L2 − C2

8 ω2
. (17)

At fixed ω, the equilibrated state satisfies 〈L〉 = 〈C〉 = 0
[15,25] and 〈H〉 achieves its minimum value 〈H〉eq.. For this
state, X becomes a scaled minimum energy:

X = 〈H〉2
eq.

8 ω2
. (18)

All other states reachable with the dynamics have a higher
rescaled energy albeit they have the same von Neumann
entropy which is a function only of X [15].

The identity (10) and (11) after multiplying through by 8ω2

becomes

(〈H2〉 − 〈L2〉 − 〈C2〉) − (〈H〉2 − 〈L〉2 − 〈C〉2) (19)

= Var(H) − Var(L) − Var(C). (20)

IV. EXAMPLE 2: SPIN IN MAGNETIC FIELD

The second example is a spin with its angular momentum
operators Sα , where α is the x, y, or z direction. In this case
the Hamiltonian of one spin reads

H = JSx + ω(t)Sz, (21)

where J describes a constant external magnetic field in the
x direction and ω(t) its controllable part in z direction. In
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the same algorithmic way as it was done for the parametric
harmonic oscillator, the operators L and C are

L = ω(t)Sx − JSz, (22)

C =
√

ω(t)2 + J 2Sy, (23)

which close the Lie algebra. Using the familiar commutation
relation of angular momentum operators [Sx,Sy] = ih̄Sz (and
cyclic permutations), the time-dependent metric of the algebra
is

[gik] = ω(t)2 + J 2

2

⎛
⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎠ . (24)

Thus, the resulting Casimir companion reads

X = 2
〈H〉2 + 〈L〉2 + 〈C〉2

ω(t)2 + J 2
, (25)

and again X can be considered as a scaled minimum energy.
Again the von Neumann entropy is a function only of X.

V. NONEQUILIBRIUM ENTROPY

Usually in the control problems mentioned above the
initial state is a thermal equilibrium state, i.e., the density
operator is ρeq = exp[−βH(ω)]. Starting from such a state
a time-dependent ω(t) will excite L-C oscillations through a
mechanism that has been dubbed quantum friction [21–23].
The density operator then describes generalized canonical
states ρg(t)—now in the Schrödinger picture—which apart
from their dependence on H will also depend on L and C.

Once these oscillations have been excited, the von Neumann
entropy and the energy entropy [15] are no longer equal. The
energy entropy is always higher and has the value the von
Neumann entropy of the system would have if the extra energy
stored in the L-C oscillations were dissipated to thermal
energy. This is in fact what happens if thermal contact with
another system is allowed.

A direct calculation of the von Neumann entropy via SvN =
tr(ρg log ρg) is quite complicated and can be avoided by making
use of the Casimir companion X. To find the von Neumann
entropy, we start from the fundamental relation SvN,eq =
S(E,ω) that holds for the system in thermal equilibrium. From
dimensional considerations, it follows that S(E,ω) = S(ε),
where ε = ε(E,ω) is a dimensionless rescaled energy. For
instance S is a function of ε = E/ω only. We then consider any
mechanical (and thus reversible) process of our system, i.e.,
we change ω(t). The von Neumann entropy does not change
nor does Casimir companion X which thus both equal their
respective initial values,

SvN(t) = SvN,i = S(εi) = S(
√

Xi) = S(
√

X). (26)

The above result means that we can express the (constant) von
Neumann entropy by means of the time-dependent E, L, C,
and ω, which evolve due to the Hamiltonian dynamics.

This gives an easy way to calculate the von Neumann
entropy for nonequilibrium states just by replacing the scaled
energy with the square root of the Casimir companion, consid-
ering some constant scalar factors. Below this is exemplified

using the two examples introduced above. In both examples
we proceed by determining the rescaled energy as well as the
equilibrium entropy as a function of β = ω/(kBT ). Then the
energy-β relation is inverted and reintroduced into the entropy.

In the case of the parametric harmonic oscillator the
Hamiltonian has eigenvalues εk = (k + 1/2), from which we
find

ε = 〈H 〉 = 1

Z

∑
k=0

εk e−β(k+1/2) , (27)

with the partition function Z = csch(β/2)/2. With pk =
e−β(k+1/2)/Z the entropy is

S = −kB

∑
pk ln pk = kB(βε + ln Z). (28)

Inverting (27) one finds β = 2arccoth(2ε), which when
inserted into (28) leads to

S = kB

[
1

2
ln

(
ε2 − 1

4

)
+ ε arcsinh

(
ε

ε2 − 1/4

)]
, (29)

and thus

SvN = kB

[
1

2
ln

(
X − 1

4

)
+

√
Xarcsinh

( √
X

X − 1/4

)]
.

(30)

For the second example we assume a pair of interacting
spins, such that the Hamiltonian has rescaled eigenvalues
(−1,0,0,1) with β = (ω2 + J 2)/(kBT ). This system was used
to investigate quantum friction in a quantum four-stroke heat
engine [21]. Then Z = 2(1 + cosh β), β = ln[(1 − ε)/(1 + ε)],
and S = kB[ln Z − β tanh(β/2)], from which one obtains

S = kB

[
ln

(
4

1 − ε2

)
+ ε ln

(
1 − ε

1 + ε

)]
(31)

and thus

SvN = kB

[
ln

(
4

1 − X

)
+

√
X ln

(
1 − √

X

1 + √
X

)]
. (32)

VI. CONCLUSION

We introduced a dynamic invariant X of an ensemble
associated with the dynamic algebra of a Hamiltonian problem.
This invariant is related to the Casimir invariant, but reveals in-
sights into nonequilibrium thermodynamic processes. Its many
uses include bounding the minimum energy reachable by a sys-
tem, reduction of the dimension of the system dynamics, and
extension of the equilibrium entropy function to nonequilib-
rium situations to match the von Neumann entropy of the sys-
tem. Comparison between this von Neumann entropy and the
energy entropy measures the amount of work stored in marked-
for-loss degrees of freedom excited by quantum friction.

Here we analyzed the harmonic oscillator and the spin
system: two three-dimensional examples for which the re-
duction in dimension from 3 to 2 enabled by the constancy
of X makes the difference between complicated formulas
and simple geometry. These two examples are two paradigm
examples of theoretical physics and the only ones for which
shortcuts to adiabatic processes have been found using the
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very same optimal control that X simplifies. The reduction of
the dimension of the problem is a fruitful tool to simplify
optimal control problems. For instance, in [7] the former
three-dimensional problem of controlling a qubit is reduced
to an optimal control problem on the Bloch sphere, a two-
dimensional manifold. The shortcuts to adiabaticity were
found by lowering the dimension due to an invariant [9].
Dynamical algebras can have more than one Casimir invariant.
How the constancy of the associated Casimir companions can

aid in the optimal control of other quantum systems remains
to be seen. Such optimal control is sure to be important for
quantum computing [3] and for NMR [4]. Do fast, effectively
adiabatic processes exist for these systems? The Casimir
companion is likely to play a significant role in answering
these questions. One important role is already clear. Since X

enables us to quantify the availability in a quantum state away
from equilibrium it tells us the target energy for any effectively
adiabatic process.
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