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We analyze the maximum obtainable yield of B, starting from A in the consecutive chemical reactions
ASBSC. We use the temperature as the control variable for a given process duration. We show that all
optimal paths start with a branch at infinite temperature and derive a curve on which switching from this
temperature to lower temperatures is possible. We also show that the production rate of B at the end of the
reaction is equal to the incremental gain of B when the path is re-optimized for increased duration. Finally,
we show that for a given set of parameters, there is a unique “maximum useful time” which may be infinite.
If a duration longer than this “maximum useful time” is specified, then all reactions should be shut off for
that excess amount of time, a situation that makes most optimization routines become unstable.

1. Introduction

Already a half-century ago, several authors1-11 considered
the question of improving the yield of a chemical reaction taking
place in a tubular reactor by adjusting the temperature in various
parts of the reactor. The papers most pertinent to the present
work are those of Bilous and Amundson3 and Aris.8-11 Since
then, numerical and approximate techniques have become
widespread.12 Analytical approaches to understanding the
structure of possible solutions, on the other hand, have met with
grave difficulties and have been abandoned in favor of an
engineering approach that can solve specific real-world problems
of industrial interest. This circumstance, in which the search
for general principles is abandoned in favor of the explicit
solution of practical problems, is reminiscent of the state of
energy conversion technology in the early 1970s, when R.
Stephen Berry and others13 approached thermodynamics with
the aim of extracting general principles for what is possible
given the constraint of finite time. Not unlike now, practical
engineering optimizations were technically up to the task of
designing real applications, but there was a lack of general
results concerning limits to what is possible in finite time. This
paper is offered in a similar spirit. We strive to increase the
analytic understanding of the possible control of chemical
reactions for maximal yield with a focus on finite time. We
hope our efforts are a fitting tribute in this volume dedicated to
Berry’s 70th birthday.

By considering a reaction in a tubular reactor, through which
the reacting material is pumped and along which the temperature
varies, we are in effect considering a reaction at a temperature
that varies with time. If there is only one chemical reaction going
on, the more or less obvious answer to the problem of getting
maximum yield is to adjust the temperature so that the reaction
rate is as large as possible at each point of the reactor. This, in
most cases, just means keeping the temperature as high as

possible. In the following, we let the temperature be infinite,
but by this we simply mean “as high as possible, other
conditions taken into account”.

Aris8 solved the problem of two consecutive reactions using
the method of dynamic programming rather than the functional
differentiation used by Bilous and Amundson.3 In this paper,
we use the method of optimal control theory, on the problem
ASBSC and derive some new conclusions regarding its
optimal control.

2. System

We consider the system of first-order chemical reactions

with rate constantski, i ) 1...4 depending on temperatureT
through Arrhenius expressions,ki ) sie-Ei/kT with activation
energiesEi and collision factorssi. These are taken to be
constants, whereas the temperatureT varies with time.

Starting from pure A, our objective is to produce as much B
as possible within a given durationτ by varying the temperature
appropriately over the time span [0,τ]. We do not put any
restrictions on the temperature, except that it must be positive,
and we assume that it can be changed freely and instantaneously
as needed.

3. Optimization Procedure

We use optimal control theory14 to derive the optimal
temperature path. To avoid the omnipresent exponential func-
tions in the rate constants, it is convenient to change the control
variable fromT to

with u restricted to the interval [0,1] corresponding to the
temperature interval [0,∞] so that† Part of the special issue “R. Stephen Berry Festschrift”.
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Our objective function to be maximized is thus

subject to the three constraints

and with initial conditions

SubstitutingC from eq 7 into eq 6, the Hamiltonian for this
system becomes

whereµ is the combined multiplier from the dynamic eq 6 and
the objective function in eq 4. The Hamiltonian equations to
be solved are then

subject to the boundary conditions eq 8 and

The controlu(t) is determined by

where argmaxH means the value ofu that results in the
maximum possible value ofH. The HamiltonianH depends on
the “temperature”u through the rate constantski.

4. Consequences of Optimality

Our first observation is valid much more generally than the
example considered here. We first note that the Hamiltonian in
any problem without explicit time dependence except for a
constrained total timeτ equals the incremental yield of the
objective function by increasing the duration of the process

whereB* is the optimal value of the objective functionB over
possible controls of durationτ. It then follows that when we
are maximizing the yield of one chemical, say B, without regard
for the final values of other species, the marginal yield per unit
of time spent is exactly equal to the rate of B production at that
instant. That is

This follows by substituting the boundary conditions eq 11 into
the Hamiltonian expression eq 9 and identifying the resulting
expression asdB/dt. This observation is generally true, provided
that the objective function coincides with the final value of one

of the state variables, and none of the other state variables have
constrained final values, a common occurrence for chemical
systems. One implication of this result is that, to first order,
one can always simply continue on the optimal trajectory past
the final duration without re-optimizing.

Although our ultimate aim is primarily to understand the
effects of finite time limitations, consider for a moment the
problem with unconstrained durationτ. For this case, the
Hamiltonian must vanish and so will the final reaction rate.
Suppose there is a finite optimal durationτ*. Then any duration
τ > τ* is also optimal because we can ensure the same yield
by proceeding as before up to timeτ* and then setting the
temperature to 0 (u ) 0). Thus, the structure of such problems
is highly unusual in the sense that they have amaximal useful
time τmut. Any time allocated beyondτmut is spent at 0
temperature with the reactions shut off. Note thatu ) 0 implies
that the Hamiltonian is zero and all of the dynamical equations
give zero derivatives. As expected on physical grounds, the
process is frozen. Suchu ) 0 branches can be added to any
optimal process and still have the results satisfy all the conditions
of optimality. In fact, for solutions corresponding toH ) 0,
such branches can be spliced in anywhere along the process,
once the constrained timeτ exceeds the maximum useful time.
This fact serves to confound numerical algorithms for the
solution.

It follows from eq 13 that for any for anyτ < τmut, H is a
positive constant. Plugging our initial conditions intoH, we find
that

The only consistent solution of eq 12 fort ) 0 is thenu ) 1,
i.e., for τ < τmut, the optimal control starts with infinite
temperature.

How long should the system remain atu ) 1? This is a
difficult but chemically interesting question. Theu ) 1 trajectory
is followed as long as this value ofu maximizes the Hamilto-
nian. This situation can change either abruptly, by a better
maximum showing up at another value ofu resulting in a jump
to that temperature, or gradually, by the minimum moving off
from the boundaryu ) 1. Both of these cases are illustrated by
numerical solutions in the next section. For the case where this
change is gradual, we can derive an asymptotic switching curve.
At the instant where the optimal control leavesu ) 1, we must
have

For a fixed value ofH, this must be solved together with
H(u ) 1) ) H0 to find the switching curve which in general
depends on the values ofλ andµ. In the long time limit, when
H f 0, the dependence onλ andµ drop out and we find the
conic section

with

Note that these curves always pass through (A,B) ) (0,0) and
(1,0).

B(τ) ) ∫0

τ dB
dt

dt (4)
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dt
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5. Numerical Optimization

We present two numerical examples of this boundary value
problem solved using Krotov’s method,15 in which alternately
the state differential equations (inA and B) are integrated in
the forward time direction and the conjugate differential
equations (inλ andµ) are integrated in the backward direction.
In this way, each set of equations starts with its given boundary

conditions. After each iteration back and forth, theu that
maximizesH is determined at each point along the trajectory.
This method is much more efficient than the conventional
“shooting method” and usually converges in just a few iterations
as long asτ is not too long, i.e., as long as time is at a premium,
such that it must be used carefully. For long reaction times,
one or more periods of standstill may be required, as explained

Figure 1. Optimal time sequences of the concentrationsA, B, andC (frame a: dashed, solid, dotted) as well as the conjugate variablesλ andµ
(frame b: dashed and solid) for activation energiesE ) (1, 2, 1, 3), collision factorss ) (0.7, 0.7, 0.7, 0.7) and durationτ ) 1. Frame c shows
the phase relationship,A as function ofB, for the optimal path. Frame d shows the time evolution of the controlu (“temperature”) which produces
the optimum yield.

Figure 2. Optimal solution for activation energiesE)(2, 1, 3, 1), collision factorss ) (0.6, 0.6, 0.6, 0.6), and durationτ ) 1. The nomenclature
is the same as in Figure 1 except that in frame c the switching condition from the boundary branchu)1 is shown dashed.
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above. This indeterminacy made it impossible to obtain numer-
ical solutions for durationsτ > τmut.

Figure 1, parts a and b, shows the optimal time sequences of
the concentrationsA, B, andC, as well as the conjugate variables
λ and µ for the case in which the activation energies and
collision factors used areE ) (1, 2, 1, 3),s ) (0.7, 0.7, 0.7,
0.7), andτ ) 1. Frame c of Figure 1 shows the phase plot ofA
vsB. Frame d of Figure 1 contains the controlu (“temperature”)
which produces the optimum. This represents a system where
B is more stable than A, and C is more stable still. Thus, without
control, the final product would be C. The optimal path calls
for a relatively long period at infinite temperature, after which
the temperature jumps to a much lower value to prevent loss
into C (see frame d).

Figure 2 withE ) (2, 1, 3, 1),s ) (0.6, 0.6, 0.6, 0.6), and
τ ) 1 is the opposite case where A is the most stable substance.
Again, the optimal path starts with a fairly long period at infinite
temperature but then gradually breaks away to lower values as
B should be favored over C (Figure 2, frame d). The cooling
begins when the phase trajectory ofA vsB crosses the switching
curve shown in frame c of Figure 2.

6. Conclusions

The consecutive chemical reactions ASBSC have been
analyzed both numerically and analytically. Starting with pure
A and maximizing the amount of B at the end of the given
process duration, we find that all optimal paths start at infinite
temperature (u ) 1). Depending on the energy barriers and the
collision factors, the optimal temperature may subsequently
switch to either a finite temperature (internal optimum) or zero
temperature (u ) 0) if the “maximum useful time” is exceeded.
For certain sets of parameter values, the production ratedB/dt
will approach zero asymptotically for long process durations;
for others, it will become zero for finite durations. If such an
internal zero exists, then the optimization becomes indeterminate
for longer durations because the required periods of shutting
off the reaction can equally well appear anywhere during the
process.

The final value of the production ratedB/dt was shown to
equal the marginal productivity of additional time allocated

dB*/dτ. This shows that continuing along a path optimized for
durationτ will, to first order, result in the same yield as re-
optimizing for a longer duration. We remark that maximizing
the yield of B for a given duration and minimizing the duration
for a given yield are dual problems and thus equivalent,16 a
fact that does not seem to be appreciated in recent engineering
literature.12

The present line of development should be considered part
of the continuing effort along R. Stephen Berry’s original vision
of finite-time thermodynamics13 as the exploration of general
bounds on what can be achieved in finite time. Although the
problem discussed in this article does not concern the energetics
of the process directly, it is an attempt to find how much of A
can be turned into B in a given time and thus belongs to the
realm of finite-time thermodynamics. Although we have found
several interesting conclusions regarding this simple system,
much more remains unanswered.
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