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Abstract

Heavy-fermion excitations require the presence of a low-energy scale in the system. In recent

years it has become clear that these scales can result from rather different physical processes.

The Kondo effect is one of them, certainly the one most studied. We describe and discuss in

addition to Kondo lattices two other sources of heavy quasiparticles: the Zeeman route to heavy

fermions which applies to Nd2−xCexCuO4 (0.1 ≤ x ≤ 0.2) and a scenario of nearly half-filled

Hubbard chains which is related to the semimetal Yb4As3. It is suggested that these are not the

only processes leading to heavy-fermion behaviour.

1 Introduction

The investigation of heavy-fermion systems with heavy-quasiparticle excitations
has developed into a new branch of low-temperature physics. Recent reviews have
been given of theoretical (Lee et al., 1986; Fulde et al., 1988; Schlottmann, 1984;
Zwicknagl, 1993; Norman and Koelling, 1993; Kasuya, 1993; Hewson, 1993) and
experimental (Stewart, 1984; Ott, 1988; Grewe and Steglich, 1991; Wachter, 1994)
developments in this field. In most cases these compounds contain Ce, Yb, U or
Np as one of their constituents, implying that 4f or 5f electrons are involved.
Examples are the metals CeAl3, CeCu2Si2, CeRu2Si2, CeCu6, YbCu2Si2, UBe13,
UPt3, and NpBe13. But also the electron-doped cuprate Nd2−xCexCuO4 shows
heavy-fermion behaviour (Brugger et al., 1993) in the range of 0.1 ≤ x ≤ 0.2.
Heavy-fermion excitations have also been found in semimetals like Yb4As3, Sm3Se4

or in some of the Ce and Yb monopnictides and even in insulators like YbB12 or
SmB6 (see, for example, Proc., 1995).

We speak of heavy-fermion behaviour when a system meets the following con-
ditions: (a) The low temperature specific heat C = γT has a coefficient γ of order
1 Jmol−1K−2, rather than 1 mJmol−1K−2 as, e.g., found for sodium metal; (b) the
Pauli susceptibility χs is similarly enhanced as γ; (c) the ratioR = π2k2

Bχs/(3µ2
effγ)
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(Sommerfeld–Wilson ratio) is of order unity. Here µeff is the effective magnetic
moment of the quasiparticles. Both quantities γ and χs are proportional to the
quasiparticle density of states at the Fermi level N∗(0). The latter is proportional
to m∗, i.e., the effective mass of the fermionic excitations. Large values of γ and χs

can therefore be interpreted by ascribing a large m∗ to the quasiparticles. When
R is calculated, the density of states N∗(0) drops out. For free electrons R = 1,
while in the presence of quasiparticle interactions R = (1 + F a

0 )−1. The Landau
parameter F a

0 relates to the interactions and enters χs. When conditions (a)–(c)
are met, we may assume a one-to-one correspondence between the quasiparticle
excitations of the complex system and those of a free electron gas, provided we
use the effective mass m∗ and, in the case of semimetals or insulators, the effective
charge e∗, instead of the corresponding bare quantities.

Heavy-fermion behaviour requires the presence of a low-energy scale in the sys-
tem. Usually, that scale is characterized by a temperature T ∗. As the temperature
of the system increases to values above T ∗, the quasiparticles lose their heavy-mass
character. The specific heat levels off, and the susceptibility changes from Pauli- to
Curie-like behaviour. With increasing temperature the rare-earth or actinide ions
behave more and more like ions with well-localized f electrons.

One key problem is to understand the physical origin of the low-energy scales.
Until few years ago, it was commonly believed that the Kondo effect is the sole
source of heavy-fermion behaviour. The physics associated with the Kondo effect is
extensively described in a monograph by Hewson (1993) and a number of reviews
(Lee at al., 1986; Fulde et al., 1988; Schlottmann, 1984; Zwicknagl, 1993; Norman
and Koelling, 1993; Kasuya, 1993). However, more recently it has been found
that heavy quasiparticles may result from rather different physical effects. In all
cases a lattice of 4f (or 5f) ions is involved. In metallic systems it is coupled to
conduction electrons. In that case the conduction electrons can be either weakly
correlated like in CeAl3, or they can be strongly correlated like in the high-Tc

cuprates. In the latter case the correlations are perhaps not as strong as those
of the f electrons, but they may influence substantially the physical properties of
the system. This situation is encountered, e.g., in Nd2−xCexCuO4 and it will be
shown later that here the Zeeman effect is responsible for the formation of heavy
fermions. In a semimetal like Yb4As3, the heavy quasiparticles result from the
4f electron system itself, i.e., without having a coupling to conduction electrons
crucially contributing. Thus, instead of having one single physical origin, heavy
fermions may have a variety of effects responsible for their existence.

Obviously, the low-lying excitations characterizing heavy-fermion systems in-
volve predominantly spin degrees of freedom. Direct evidence is given by the
amount of entropy associated with the excess specific heat. The latter is associated
with an entropy of order S � kB ln νf per f site, where νf denotes the degeneracy
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of the crystal-field ground state of the atomic f shell. It is pretty safe to state that
in all likelihood yet unknown mechanisms will add to the presently known ones. In
the following, a discussion is given of the three routes to heavy-fermion behaviour
just outlined.

2 Kondo lattices

The essence of the single-site Kondo effect is the formation of a singlet ground-
state due to a weak hybridization of the incomplete 4f shell with the conduction
electrons. A specific form of the singlet wavefunction is obtained by starting from
the Anderson impurity Hamiltonian

H =
∑
km

ε(k)c+kmckm + εf
∑
m

nf
m +

U

2

∑
m �=m′

nf
mn

f
m′ + (1)

+
∑
km

V (k)(f+
mckm + c+kmfm) + H̃0.

Here f+
m denotes the creation operator of an f electron in state m of the lowest J

multiplet and nf
m = f+

mfm. The f -orbital energy is εf and U is the f − f Coulomb
repulsion. The c+km create conduction electrons with momentum |k | = k and the
three quantum numbers � = 3, J and m. The hybridization between the f and
conduction electrons is given by the matrix element V (k). Finally, H̃0 contains all
those degrees of freedom of the conduction electrons which do not couple to the
impurity. The following ansatz for the singlet ground-state wave function is due to
Varma and Yafet (1976).

| ψ0〉 = A
(
1 +

1√
νf

∑
km

α(k)f+
mckm

)
| φ0〉 (2)

where | φ0〉 represents the Fermi sea of the conduction electrons. The ansatz (2)
is closely related to the one suggested by Yoshida (1966; see also Yoshida and
Yoshimori, 1973) for the ground state of the Kondo Hamiltonian. The variational
parameters A and Aα(k) are obtained by minimizing the energy. The energy E0 of
|ψ0〉 is always lower than the one of the multiplet | ψm〉 = f+

m | φ0〉. The difference
ε is found to be

ε = −D exp[− | εf | /(νfN(0)V 2)] (3)

and denotes the energy gain due to the formation of the singlet. Here D is half
of the bandwidth of the conduction electrons and N(0) is their density of states
per spin direction at the Fermi energy. It is customary to associate with this
energy gain a temperature TK , i.e., the Kondo temperature. The singlet-triplet
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excitation energy is often of the order of a few meV only, and provides a low-
energy scale. When a lattice of f ions is considered like, e.g., CeAl3 the Anderson
lattice Hamiltonian replaces Eq. (1). The energy scale kBTK is replaced here by
kBT

∗ which takes into account modifications in the presence of the lattice, i.e., due
to interactions between different f sites. The energy gain due to singlet formation
competes here with the one due to the RKKY interaction when the f sites are in
a magnetic state (Doniach, 1971, 1987). In the limit of small hybridization V the
RKKY interaction energy always wins out because it is proportional to V 4 while
the singlet-formation energy depends exponentially on V , see Eq. (3), and therefore
is smaller. This seems to be the case in systems like CeAl2, CePb3 and NpBe13

which become antiferromagnets at low temperatures.
In addition to T ∗ there exists another characteristic temperature Tcoh < T ∗

below which the local singlet-triplet excitations lock together and form coherent
quasiparticles with large effective masses. The details of this coupling are not
yet understood, but de Haas–van Alphen measurements demonstrate convincingly
that the f electrons behave like delocalized electrons. At the Fermi surface they
show strong anisotropies in the effective mass. It is somewhat surprising that
one can calculate the Fermi surface of a heavy-electron system and determine the
anisotropic masses with one adjustable parameter only. This is achieved by renor-
malized band-structure calculations (Zwicknagl, 1993, 1990; Razafimandimby et
al., 1984; d’Ambrumenil and Fulde, 1985; Sticht et al., 1986; Strange and Newns,
1986; Zwicknagl et al., 1990). Thereby the effective potential seen by a quasipar-
ticle is described by energy-dependent phase shifts ηA

� (ε) of the different atoms A.
The index � refers to the different angular momentum channels.

In the following we consider CeRu2Si2 as an example (Zwicknagl, 1993, 1990;
Zwicknagl et al., 1990). The essential point is to use for the phase shifts the ones
computed within the local-density approximation (LDA) to density functional the-
ory, with the exception of the � = 3 phase shift of the Ce ion. This approximation
neglects the coupling of conduction electrons to different configurations of the 4f
or 5f shell with fixed f electron number. [The mass enhancement of the conduction
electrons of Pr metal falls into that category. It results from the virtual transitions
between different crystal-field eigenstates of the 4f2 system caused by the coupling
between conduction and 4f electrons (Fulde and Jensen, 1983; see also White and
Fulde, 1981)]. Thus, only the ηCe

�=3(ε) phase shift remains undetermined. Accord-
ing to Hund’s rules the ground-state multiplet of the 4f2 configuration of Ce is
J = 5/2 with the J = 7/2 multiplet being much higher in energy. Therefore, we
may set ηCe

J=7/2(εF ) = 0. Of the J = 5/2 multiplet, only the Kramers-degenerate
crystal-field ground state is considered, because it is the only state occupied at low
temperatures. Let τ denote the degeneracy index of that ground state. Only the
phase shift ηCe

τ (εF ) among the different � = 3 channels differs then from zero. It
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must contain the strong correlations of the 4f electrons and is unknown. In the
spirit of Landau’s Fermi liquid theory we expand this unknown function around
the Fermi energy and write

ηCe
τ (ε) = ηCe

τ (εF + a(ε− εF ) +O((ε− εF )2). (4)

Of the two parameters one, i.e., ηCe
τ (εF ) is fixed by requiring that the number of

4f electrons nf = 1. According to Friedel’s sum rule this implies ηCu
τ (εF ) = π

2 .
The remaining parameter a fixes the slope of the phase shift at εF . The latter
determines the density of states and hence the effective mass. We set a = (kBT

∗)−1

and determine T ∗ by requiring that the linear specific heat coefficient γ calculated
from the resulting quasiparticle dispersions agrees with the experimental one. The
different computational steps are summarized in Fig. 1. Calculations of this form
have explained and partially predicted (Zwicknagl, 1993, 1990; Zwicknagl et al.,
1990) the large mass anisotropies in CeRu2Si2 (Lonzarich, 1988). For more details
on renormalized band theory we refer to comprehensive reviews which are available
(Zwicknagl, 1993; Norman and Koelling, 1993).

When the temperature increases beyond Tcoh the excitations lose their coher-
ence properties and the problem reduces to that of independent impurities. In that
regime the specific heat contains large contributions from the incoherent part of the
f electron excitations. The noncrossing approximation (NCA) is a valuable tool
for treating the coupled 4f and conduction electrons in that temperature regime
(Aoki et al., 1993; Keiter and Kimball, 1971; Kojima et al., 1984). It leads to a
system of coupled equations of the form

Σ0(z) =
Γ
π

∑
m

∫ +∞

−∞
dζ ρm(ζ)K+(z − ζ) (5)

Σm(z) =
Γ
π

∫ +∞

−∞
dζ ρ0(ζ)K−(z − ζ).

Here Γ = πN(0)V 2 and K±(z) are defined by

K±(z) =
1

N(0)

∫ +∞

−∞
dε
N(±ε)f(ε)
z + ε

(6)

where f(ε) is the Fermi energy and N(ε) is the energy-dependent conduction-
electron density of states. The function Σα(z) and ρα(z) (α = 0;m) are related to
each other through

ρα(z) = − 1
π

Im{Rα(z)} (7)

Rα(z) =
1

z − εα − Σα(z)
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Figure 1. Different computational steps for a renormalized band-structure calcula-

tion (Zwicknagl, 1993)).

with εα=0 = 0, εα=m = εfm. The NCA equations have to be solved numerically
(Bickers, 1987; Bickers et al., 1985). However, one can find simple, approximate so-
lutions which have the virtue that crystal-field splittings can be explicitly included,
a goal which has not been achieved yet by numerical methods. Once the ρα(ε) are
known, one can determine, e.g., the temperature dependence of the f -electron oc-
cupancies nfm = 〈f+

mfm〉 through

nfm(T ) =
1
Zf

∫ +∞

−∞
dε ρm(ε) e−β(ε−µ), (8)

where µ is the chemical potential and

Zf =
∫

C

dz

2πi
e−βz

(
R0(z) +

∑
m

Rm(z)
)

(9)

is the partition function of the f electrons. Knowing the nfm(T ) enables us to
compute quantities like the temperature dependence of the quadrupole moment of
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Figure 2. Temperature dependence of the quadrupole moment Q(T ) of the 4f

electrons in YbCu2Si2. Crosses: experimental values; solid line: theoretical results

for the parameters T ∗ = 200 K, Γ = 47.4 meV and a crystal-field parameter 3B0
2 =

−1.67 meV (Zevin et al., 1988).

the f sites
Q(T ) =

∑
m

〈m | (3J2
z − J2) | m〉nfm(T ). (10)

In Fig. 2 is shown a comparison between theory and experiments for the quadru-
pole moment of Yb in YbCu2Si2 (Thomala et al., 1990; Zevin et al., 1988). The
input parameters are Γ, T ∗ and the CEF parameter B0

2 . The latter determines the
crystal-field splitting of the J = 7/2 ground-state multiplet of Yb3+.

When T � T ∗, the f electrons can be treated as being localized. Their moment
is weakly interacting with that of the conduction electrons and perturbation theory
can be applied to study the resulting effects. The different temperature regimes are
shown in Fig. 3. A beautiful demonstration of the above scenario is the experimen-
tally observed difference in the Fermi surfaces of CeRu2Si2 and CeRu2Ge2 (King
and Lonzarich, 1991). When Si is replaced by Ge the distance between Ce and its
nearest neighbours is increased. This implies a decrease in the hybridization of the
4f electrons with the valence electrons of the neighbouring ions. While in CeRu2Si2
the characteristic temperature is T ∗ � 15 K, it is practically zero in CeRu2Ge2. De

Figure 3. Different temperature regimes and theoretical methods for describing the

low-energy excitations of a Kondo-lattice system
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Haas–van Alphen experiments are performed at a temperature T � 1 K implying
T � T ∗ for CeRu2Si2 while T � T ∗ for CeRu2Ge2. Therefore, the 4f electron of
Ce contributes to the volume of the Fermi sea in the former case, but not in the
latter. Indeed, experiments show that the two Fermi surfaces have similar features
but differ in volume by one electron (King and Lonzarich, 1991).

3 Zeeman route to heavy fermions

Low-temperature measurements of the specific heat and magnetic susceptibility
demonstrate the existence of heavy-quasiparticle excitations in the electron-doped
system Nd2−xCexCuO4 (Brugger et al., 1993). For x = 0.2 and temperatures
T ≤ 1 K the linear specific heat coefficient is γ = 4 J/(molK2). The magnetic
susceptibility χs is approximately T -independent in that temperature regime and
the Sommerfeld–Wilson ratio is R � 1.8 (see Fig. 4). While these features agree
with those of other heavy-fermion systems, there are also pronounced differences. In
superconducting heavy-fermion systems like CeCu2Si2 or UPt3 the Cooper pairs
are formed by the heavy quasiparticles. This is evidenced by the fact that the
jump in the specific heat ∆C at the superconducting transition temperature Tc

is directly related to the large γ coefficient, i.e., ∆C(Tc)/(γTc) ≈ 2.4. The low-
energy excitations are therefore strongly reduced below Tc. In superconducting
Nd1.85Ce0.15CuO4 the formation of Cooper pairs has no noticeable effect on the
heavy-fermion excitations. They remain unaffected by superconductivity.

A crucial difference between Nd2−xCexCuO4 and, e.g., CeCu2Si2 are the strong
electron correlations between the conduction electrons present in the former, but
not in the latter material. In the two-dimensional Cu–O planes of Nd2−xCexCuO4

with x ≥ 0.1 we have to account for antiferromagnetic fluctuations which are
very slow at low temperatures. There is considerable experimental evidence for
this. Consider undoped Nd2CuO4, an antiferromagnet with a Néel temperature of
TN � 270 K. Since the exchange interactions between a Nd ion and its nearest-
neighbour Cu ions cancel because of the antiferromagnetic alignment of the Cu
spins, one is left with the next-nearest neighbour Cu–Nd spin interaction. The
latter is of the form α sCu · SNd and is larger than the Nd–Nd interaction. The
Schottky peak in the specific heat seen in Fig. 4 results from the spin flips of the Nd
ions in the staggered effective field α〈sCu〉 set up by the Cu spins (Zeeman effect).
It is also present in doped systems like Nd1.8Ce0.2CuO4 where antiferromagnetic
long-range order is destroyed by doping. This can only be understood if the changes
in the preferred direction of the Cu spins occur sufficiently slowly, i.e., slower
than 10−10 s in the present case, so that the Nd spins can follow those motions
adiabatically. Only then is a similar energy to that in Nd2CuO4 required to flip
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Figure 4. Heavy-fermion behaviour of Nd2−xCexCuO4. (a) specific heat Cp(T ); (b)

Cp(T )/T ; (c) spin susceptibility for an overdoped sample with x = 0.2 (Brugger et

al., 1993).

a Nd spin. This physical picture has been confirmed by recent inelastic neutron-
scattering (Loewenhaupt et al., 1996) and µSR experiments (J. Litters, private
communication). Spin-glass behaviour can be excluded.

Due to an effective valency of Ce of approximately +3.5 the Cu–O planes are
doped with electrons, i.e., a corresponding number of Cu sites are in a 3d10 con-
figuration. Since these sites have no spin they do not interact with the Nd ions.
The extra electrons move freely in the Cu–O planes and therefore, the interaction
of a Nd ion with the next-nearest Cu site is repeatedly turned off and on. It is this
feature which results in heavy-quasiparticle excitations.

Two model descriptions have been advanced in order to explain the low-energy
excitations of Nd2−xCexCuO4. One is based on a Hamiltonian in which the Nd–Cu
interaction is treated by a hybridization between the Nd 4f and Cu 3d orbitals.
Usually it is much easier to extract heavy quasiparticles from such a Hamiltonian
than from one with a spin–spin interaction obtained after a Schrieffer–Wolff trans-
formation. The slow, antiferromagnetic fluctuations of the Cu spins are replaced by
a static staggered field acting on them. This symmetry-breaking field also accounts
for the strong correlations in the Cu–O planes because charge fluctuations between
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Figure 5. Schematic drawing of the quasiparticle excitation bands of

Nd2−xCexCuO4 for x > 0 (electron doping). The Fermi energy is indicated by

a dotted line. Dashed lines: d-like excitations and solid lines: f -like excitations.

Cu sites are strongly reduced this way (unrestricted Hartree–Fock). Thus H reads

H = −t
∑

<ij>σ

(a+
iσajσ + h.c.) + h

∑
iσ

σeiQ·Ria+
iσaiσ (11)

+ V
∑
iσ

(a+
iσfiσ + h.c.) + ε̃f

∑
iσ

f+
iσfiσ.

Here Q = (π, π) is a reciprocal lattice vector, Ri denotes the positions of the Cu
ions and h is the size of the staggered field. The operators a+

iσ, f+
iσ create an electron

in the Cu 3dx2−y2 and the Nd 4f orbital, respectively. For simplicity, only one Nd
site per Cu site is considered and one 4f orbital with energy ε̃f is assumed instead
of seven. The energies ε̃f and V are strongly renormalized quantities because of
the 4f electron correlations.

The Hamiltonian (11) is easily diagonalized. Four bands are obtained, two of
which are d-like (Cu) and two which are f -like (Nd). The dispersions of the four
bands are given by

Eν(k) =
ε̃f ± εk

2
± 1

2

√
(εk ∓ ε̃f)2 + 4V 2 , ν = 1, . . . , 4 (12)

where εk = (ε20(k) + h2/4)1/2 and ε0(k) = −2t(cos kx + cos ky). A schematic plot
is shown in Fig. 5. At half-filling only the lower f band is filled and the Schottky-
peak contributions to C(T ) are due to transitions from the filled lower to the empty
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Figure 6. Superconducting density of states for Nd1.85Ce0.15CuO4. A BCS-like

model has been assumed. The f -like low-energy excitations remain virtually un-

changed by the superconducting order parameter (Courtesy of G. Zwicknagl and S.

Tornow).

upper f band. When the planes are doped with electrons the upper f band becomes
partially filled resulting in low-energy excitations with large effective mass. The
latter follows from the quasiparticle dispersion

Eqp(k) � ε̃f +
V 2

(ε̃f + εk)
. (13)

It is noticed that here it is the Zeeman splitting of the f states which is responsible
for the occurrence of heavy-electron behaviour. The effect of superconductivity on
the heavy quasiparticles can be studied by adding an attractive interaction part
Hattr for the charge carriers in the Cu–O planes to the Hamiltonian (Fulde and
Zevin, 1993). For V = 0 the conventional BCS spectrum is recovered for the elec-
trons in the upper Cu band. When V 
= 0 the lower Cu band hybridizes with one of
the dispersionless f bands. The lower d band remains unaffected by superconduc-
tivity because pairing occurs in the upper d band. Therefore, superconductivity
has no effect here. The upper d band hybridizes with the second f band. When
H is diagonalized one finds a BCS gap in the Cu band while the f band remains
virtually unchanged as compared with a vanishing superconducting order parame-
ter. The resulting density of states is shown in Fig. 6. The structure inside the gap
stems from the spin degrees of freedom of the Nd ions.

The second model description of the Nd spins coupled to the Cu spin is based
on stochastic forces acting on the latter (Igarashi et al., 1995). They mimic the
interaction of the Cu spin with its environment, i.e., with the other Cu spins. In
that case we start from the Hamiltonian

Hint = α sCu · Sf , α > 0 (14)
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for the Nd–Cu interaction. For simplicity, both spins are assumed to be of mag-
nitude S. We treat the vector Ω = sCu/S like a classical variable, subject to a
stochastic force. We assume a Gauss–Markov process in which case the distribution
function obeys a Fokker–Planck equation. The correlation function is then of the
form

〈Ω(0)Ω(t)〉 = e−2Drt (15)

where Dr can be obtained from the nonlinear σ model (Chakravarty et al., 1989;
Chakravarty and Orbach, 1990). Because there is no long range-order 〈Ω(0)〉 = 0.
The motion of the Nd spin is governed by the equation

d

dt
n(t) = ω0

(
Ω(t) × n(t)

)
(16)

where n(t) = Sf/S and ω0 = αS. The spectral function

I(ω) =
1
2π

∫ +∞

−∞
dt eiωt〈n(0)n(t)〉 (17)

is evaluated by making use of the corresponding stochastic Liouville equation. We
find that I(ω) is of the form

I(ω) =
1
3π

4Dr

ω2 + (4Dr)2
+ (side peaks at ω0). (18)

While Dr(T ) vanishes as T → 0 in the presence of long-range order, it remains
finite when the latter is destroyed by doping. A linear specific heat contribution of
the 4f spin is obtained from

C(T )imp =
d

dT
〈Hint〉 =

S(S + 1)
T 2

∫ ∞

0

dω ω2 I(ω)
cosh2(ω/2T )

(19)

when Dr(T = 0) 
= 0. The side peaks in I(ω) give raise to a Schottky-type
contribution. The calculated specific heat is shown in Fig. 7 and reproduces the
experiments reasonable well (compare with Fig. 4). One shortcoming of the theory
in its present form is the low-temperature spin susceptibility which follows from

χimp(T ) =
4
3
(gµB)2S(S + 1)

∫ ∞

0

dω
I(ω)
ω

tanh
ω

2T
. (20)

We find χimp(T ) ∼ ln(Dr/T ) at low T . This is possibly due to the neglect of Nd–Nd
interactions. However, when evaluated for T = 0.4 K one finds for Nd1.8Ce0.2CuO4

a Sommerfeld–Wilson ratio of R � 1.4.
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Figure 7. Specific heat contribution of a Nd ion with S = 1/2. Curves (a)-(d)

correspond to Dr/ω0 = 0.05, 0.1, 0.5, 0.8, respectively (Igarashi et al., 1995).

4 Hubbard chains - Yb4As3

The intermetallic compound Yb4As3 is of the anti-Th3P4 structure. The Yb ions
are situated on chains with directions along the diagonals of a cube. Thus we are
dealing with a system of four sets of interpenetrating chains (see Fig. 8). We want
to draw attention to the fact that the distance between neighbouring Yb ions on a
chain exceeds the one between neighbouring ions on different chains.

Because As has a valency of −3, three of the four Yb ions have a filled 4f shell,
i.e., a valency +2, while one ion is in a 4f13 configuration (valency +3). Since all
Yb sites are equivalent, the hole in the 4f shell is shared between four Yb ions
and the system is metallic. However, at a temperature Ts � 300 K the system
undergoes a weak first-order phase transition into a trigonal distorted structure
(Ochiai et al., 1990; Suzuki, 1993; Ochiai et al., 1993; Reinders et al., 1993; Kasuya,
1994; Bonville, 1994). Thereby one set of chains, e.g., along [1, 1, 1] is shortened
while the other three sets are elongating thereby leaving the volume of the unit
cell unchanged. This results in charge ordering because the Yb3+ ions have a
smaller ionic radius than the Yb2+ ones and occupy the chains with smaller Yb–Yb
distances (short chains) (Kasuya, 1994). The driving force for the phase transition
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Figure 8. (a) Structure of Yb4As3: large and small spheres represent the Yb and

As ions, respectively. (b) Four sets of interpenetrating chains on which the Yb ions

are located.

is the Coulomb repulsion between Yb3+ ions. Measurements of the Hall constant
reveal a dramatic increase below Ts, implying a sharp drop in the charge carrier
density with decreasing temperature. At low T one is left with one carrier per 103

Yb ions. The resistivity increases below Ts with decreasing temperature until it
reaches a maximum of approximately 10 mΩ cm. At low T it is of the form ρ(T ) =
ρ0 + AT 2 and therefore shows Fermi-liquid behaviour. The linear specific-heat
coefficient γ is found to be of order γ � 200 mJ/(molK2). The spin susceptibility
is Pauli like and equally enhanced as γ, giving raise to a Sommerfeld–Wilson ratio
of order unity. No indication of magnetic order is found down to T = 0.045 K, but
below 2 K the susceptibility increases again which indicates the presence of another
low energy scale (Bonville et al., 1994). The above findings strongly suggest heavy-
fermion behaviour which is further confirmed by the observation that the ratio
A/γν (ν � 2) compares well with that of other heavy-fermion systems (Ochiai et
al., 1993). One should appreciate that despite the low-carrier concentration the γ
value exceeds that of, e.g., Na by a factor of more than 102. This demonstrates
that the high density of low-energy excitations must clearly involve spin-degrees
of freedom of the Yb3+ ions. The Kondo effect can be ruled out as a source of
heavy quasiparticles. The low-energy scale which corresponds to the observed γ

value is T ∗ � 40 K. But inelastic neutron scattering shows a well resolved crystal-
field excitation of Yb3+ at a comparable energy which would be impossible if local
singlets would form with a binding energy of similar size.

A theory has been developed which can explain rather consistently the above
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experimental findings. It is based on interpreting the structural phase transition in
terms of a collective band Jahn–Teller (CBJT) effect (Fulde et al., 1995). The tran-
sition is caused by a strong deformation-potential coupling which is quite common
in mixed-valence systems. It is based on the Coulomb repulsion between differ-
ent rare-earth ions. The CBJT transition splits the fourfold degenerate quasi-1d
density of states into a nondegenerate one corresponding to the short chains and a
threefold one due to the long chains. The nondegenerate one is lower in energy and
would be half filled if charge ordering were perfect and the holes were uncorrelated
fermions. Instead, the holes are strongly correlated. Two holes on a site imply a
4f12 configuration for Yb and that has a much too high energy to occur. Therefore,
we are dealing with an almost full lower (hole) Hubbard band rather than with an
almost half-filled band. Therefore, the ideal system should be an insulator. That
Yb4As3 is a semimetal and not an insulator is probably related to the nonvanishing
hopping matrix elements between 4f orbitals in the long and short chains. This
may result in self-doping with a fraction of holes moving from the short to the long
chains. Accurate conditions for self-doping are not easily worked out, but a first
step in this direction was recently done (Blawid et al., 1996).

The phase transition can be described by an effective Hamiltonian of the form

H = −t
4∑

µ=1

∑
<ij>σ

(f+
iµσfjµσ + h.c.) + εΓ

4∑
i,µ=1

∆µf
+
iµσfiµσ + 4NLc0ε

2
Γ. (21)

The operators f+
iµσ(fiµσ) create (destroy) a 4f hole at site i of chain µ with ef-

fective spin σ (the crystal-field ground state of the J = 7/2 multiplet is two-fold
degenerate). Interchain hopping matrix elements are neglected and so is the on-site
Coulomb repulsion between holes, since near Ts holes are reasonably well separated.
The notation <ij> refers to Yb–Yb nearest neighbours in a chain of length NL.
The trigonal-strain order parameter εΓ < 0 corresponds to the bulk elastic constant
4c0. The deformation potential ∆µ is

∆µ = ∆
{

1 µ = 1
− 1

3 µ = 2, 3, 4.
(22)

With a choice of 4t = 0.2 eV obtained from LDA calculations, c0 = 1011 Ω erg/cm3

(Ω is the volume of a unit cell) and ∆ = 5 eV we obtain Ts � 250 K.
With increasing charge ordering (see Fig. 9), correlations become more and

more important because with the increase in concentration of holes in the short
chains their average distance decreases. Therefore, at low temperatures T the t–
J Hamiltonian or a Hubbard Hamiltonian must be used. Using the former and
making use of a slave-boson mean-field approximation we arrive at an effective
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Figure 9. Temperature dependence of the trigonal-strain order parameter εΓ(T ).

Shown as an inset are the occupation numbers nµ of the short (µ = 1) and long

(µ > 1) chains (Bonville et al., 1994).

mass enhancement of the form

m∗

mb
=

t

tδ + (3/4)χJ
. (23)

Here mb denotes the band mass, χ = χij = 〈∑σ f
+
i1σfj1σ〉, δ is the deviation of

the short chains denoted by 1 from half filling and J = 4t2/U , where U is the
on-site Coulomb repulsion between holes. With U = 10 eV one finds J = 10−3 eV
and using χ(T = 0) = (2/π) sin(π(1 − δ)/2) with δ = 10−3 one obtains a ratio of
m∗/mb � 100. This derivation of the mass enhancement hides somewhat the fact
that spin degrees of freedom are responsible for the heavy quasiparticles. A more
direct way of understanding the large γ value in the specific heat is by realizing that
a spin chain gives rise to a linear specific heat. Although a Heisenberg chain has no
long-range order, short-range antiferromagnetic correlations lead to spin-wave like
excitations which can be rather well described by linear spin-wave theory. Indeed,
Kohgi et al. (private communication) measured the spin-excitation spectrum by
inelastic neutron scattering and found a one-dimensional spin-wave spectrum.

Since spin-wave-like excitations are responsible for the fermionic low-energy
excitations associated with the specific heat and susceptibility we are dealing here
with charge-neutral heavy fermions in distinction to the charged heavy electrons,
which appear, e.g., in CeAl3. Therefore, we speak of an uncharged or neutral heavy
Fermi liquid.

The physical interpretation given above allows for an explanation of another ex-
periment. It has been previously found that an applied magnetic field of 4 tesla has
little influence on the γ coefficient above 2 K, but suppresses γ considerably below
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2 K (Helferich, Steglich and Ochiai, private communication). This effect is unex-
pected, since one would have thought that the changes are of order (µBH/kBT

∗)2

and therefore very small. However, we can explain the experiments by providing
for a weak coupling between parallel short chains. When linear spin-wave theory
is applied, a ratio between interchain and intrachain coupling of order 10−4 opens
an anisotropy gap which modifies C(T ) in accordance with observation (Schmidt
et al., 1996).

5 Conclusions

We have shown that heavy-fermion excitations may be of very different physical
origin. Three distinct mechanisms have been discussed which result in low-energy
scales required for the heavy quasiparticles. The most, and until recently only one
studied so far refers to Kondo lattices and is based on the formation of (local)
singlet states. They result from a weak hybridization of the 4f electrons with the
conduction electrons. In that case the low-energy scale is given by the binding
energy associated with the singlets. In distinction to Kondo lattices we are deal-
ing in the case of Nd2−xCexCuO4 with a lattice of Nd ions with a well localized
magnetic moment which are coupled to a two-dimensional system of strongly cor-
related conduction electrons. In that case a low-energy scale is provided by the
Zeeman energy of the Nd magnetic moment in the slowly fluctuating molecular
field set up by the Cu spins. Finally, in Yb4As3 the low-energy scale is due to the
band width of the spin-wave like excitations in magnetic chains formed by Yb3+

ions. The few carriers, i.e., one per 103 Yb ions are unimportant for the low tem-
perature specific heat which is governed exclusively by spin excitations (spinons).
The system serves as an example of almost perfect separation between spin and
charge degrees of freedom. For the purpose of understanding its low temperature
thermodynamic properties it can be considered a neutral or chargeless heavy Fermi
liquid. Yb4As3 belongs to a class of materials often referred to as low-carrier Kondo
systems or Kondo insulators (for recent references see, e.g., Proc., 1996). As we
have shown that might be misleading, at least for Yb4As3, where the appearance
of heavy fermions has nothing to do with the Kondo effect. However, that material
is rather distinct to CeNiSn or other members of that class. Therefore, the origin
of low-energy scales must be investigated from case to case.

In summary, heavy-fermions behaviour can have a variety of physical origins. It
remains a challenge for the future to uncover other processes leading to low-energy
scales.
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