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Optimal piston motion is derived for adiabatic processes in the presence of different types of friction
and with frictional energy dissipated externally as well as internally. The assumed model for the
frictional dissipation affects the optimal motion. We consider a piston fitted in a cylinder containing
an ideal gas as the working fluid. The gas starts from a given initial temperature and is assumed to
complete the process in a prescribed finite time. The effect of the working gas temperature �or
equivalently internal energy� on the viscosity leads to a temperature dependence of the frictional
losses. The optimal piston motion then is no longer constant speed, as was concluded previously for
the externally dissipative case. In the current study two objectives are considered: maximizing
power output and minimizing frictional losses. It is shown that in the externally dissipative mode
optimizing power or frictional losses are equivalent, while in the internally dissipative mode the
optimal motions are different. © 2006 American Institute of Physics. �DOI: 10.1063/1.2401313�

I. INTRODUCTION

Classical thermodynamics places bounds on thermody-
namic measures based on reversible assumptions.1 The re-
sulting bounds have limited practical value because revers-
ible operation implies zero rate of operation or infinite
system size. Finite-time thermodynamics �FTT� extends the
thermodynamic analysis to include the most important rate
constraints, e.g., finite heat transfer rates, heat leaks, and fric-
tion, while operating within a finite process/cycle time.2

These methods derive more realistic bounds on performance,
often including the paths for achieving such bounds. The
methods of FTT have been applied to a wide range of ther-
modynamic systems.2–19,22–28 This includes chemical
reactions,28 distillation,27 and systems attached to a large
number of sources.26

Heat engines have been treated extensively, in particular,
a model heat engine which operates between two heat reser-
voirs, a hot reservoir at temperature TH and a cold reservoir
at temperature TC, under the assumption of the Newtonian
heat transfer law, the so-called Novikov-Curzon-Ahlborn en-
gine which initiated the whole field. For this engine the effi-
ciency at maximum power production was found to be given
by the simple expression3,4

�CA = 1 − �TC/TH. �1�

Heat pumps were also originally treated with finite heat
transfer rate as the sole dissipation mechanism.5,16,17 Subse-
quently, reciprocating chillers have been analyzed and their
characteristics compared to experimental data.18,23 The effect
of heat leaks and friction on the performance of heat engines

were addressed by Refs. 5, 12, and 13, and later on the per-
formance of heat pumps was discussed in Refs. 14 and 15.

Work on finite-time thermodynamics has followed two
main approaches: generic models,2–8,12–18 and more detailed
optimization. The ideal Otto engine,9,10 the ideal Diesel
engine,11 and the Stirling engine19 are examples of the latter.
In Refs. 9–11, corresponding to the well lubricated sliding
motion of solids, the frictional losses were assumed to be
proportional to the square of the speed of the piston. For the
intake and exhaust strokes in engines fluid friction is an ad-
ditional important loss mechanism. Its effect was assumed to
be similar to the sliding friction and to have the same model
dependence on the piston speed; this assumption holds, e.g.,
in the case of laminar flow. The effect of turbulence and its
consequence on the frictional model was studied in detail in
Ref. 19. In case of turbulent flow the frictional dissipation
�FD� is proportional to the power m of the piston speed �V�
�FD�Vm�, where m is in the range of 2–3.

In the present study we focus on the effect of friction as
we account for turbulence and temperature dependence of
viscosity of the ideal working fluid. We seek the optimal
motion of a piston to complete a process in finite time, and
the optimal motion is compared to a sinusoidal motion, a
good approximation to the conventional piston motion in
practical engines. Two modeling assumptions are compared:
externally dissipative friction and internally dissipative fric-
tion. Only under special conditions is the optimal path a
constant velocity. We also find that the optimal path depends
on where the frictional heat is disposed of.

The optimal motions of the Otto engine,9,10 the Diesel
engine,11 and the Stirling engine19 were derived following
two steps: �i� The individual branches or strokes �compres-
sion, expansion, and heat addition/removal� were optimizeda�Electronic mail: mahmhul@bgumail.bgu.ac.il
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separately and then �ii� pieced together to maximize the net
work production per cycle. In the original studies the effect
of finite piston acceleration was also analyzed, leading to the
conclusion that the maximal improvement in efficiency is
1% when the acceleration is limited to the maximum accel-
eration of the sinusoidal �conventional� motion, but 15%
when there is no acceleration limitation.

In the present study we do not limit acceleration and we
consider the case of infinite acceleration so that the derived
results yield the upper bound of the improvements. We focus
on the optimization of the individual strokes taking into ac-
count the effect of friction and its dependence on the tem-
perature of the working fluid. For a full cycle optimization
the methods described previously may be applied.9–11,19

The article is arranged as follows: In Sec. II the meth-
odology and model are introduced. In Sec. III we derive and
solve the equation for optimal motion for maximum power
production. In Sec. IV we treat the frictional dissipation
term. In Sec. V we derive the optimal motion for minimal
dissipation. Finally the conclusions are given in Sec. VI.

II. METHODOLOGY AND MODEL

We consider the following problem: A piston is fitted in
a cylinder which contains an ideal gas at initial temperature
Ti �or, equivalently, internal energy Ei�. The piston is re-
quired to move from a given initial volume Vi to a given final
volume Vf in a specified time �. The final internal energy is
not specified but depends on the complete piston motion
�free-state boundary condition�. Dissipation in the system is
caused by frictional losses due to mechanical �sliding� fric-
tion and/or due to fluid friction. The fluid friction depends on
the viscosity of the working fluid, which in turn depends on
temperature �internal energy� to some power n.20 The objec-
tive in the current analysis will be to maximize power output
or minimize frictional losses. The resulting optimal motions
are sensitive to whether the frictional heat is disposed of
inside or outside the working fluid. It turns out that maximiz-
ing power or minimizing frictional losses for externally dis-
sipative friction are the same under the modeling assump-
tions considered, whereas the optimal motions are different
in the case of internally dissipative friction.

We use optimal control methods or calculus of
variations21 to optimize the specified function under energy
conservation. For an ideal gas the power produced is given
as the difference between the reversible value and the dissi-
pation,

P =
R

Cv

E

V
V̇ − �EnV̇m, �2�

where R is the ideal gas constant, Cv the heat capacity at
constant volume of the working fluid, E the internal energy,
� the frictional coefficient, n the power of temperature �en-
ergy� on which the viscosity depends, and m the power de-

pendence on the friction speed V̇. The internal energy of the
working fluid balances the power production according to

Ė = −
R

Cv

E

V
V̇ + ��EnV̇m, �3�

where � is the fraction of the heat of friction which stays
inside the engine. A similar division of energy into reservoirs
of different temperatures was treated in Ref. 22. In order to
consider the two objective functions, power and frictional
losses, simultaneously, we introduce the switching parameter
� in the Lagrangian L as follows:

L =
R

Cv

E

V
V̇�� + �� + �Ė − �EnV̇m�1 + ��� , �4�

where �=0 corresponds to minimizing frictional losses,
while �=1 corresponds to maximizing power.

The optimal motion is found by solving the Euler-
Lagrange equations,

�L

�E
−

d

dt

�L

�Ė
= 0, �5�

�L

�V
−

d

dt

dL

�V̇
= 0, �6�

leading to

�̇ =
R

Cv

V̇

V
�� + �� − �nEn−1V̇m�1 + ��� �7�

and

V̈ =
R

mCv

V̇2

V
�n − �

� + �

1 + ��
� . �8�

The solution of this system of equations, along with the
specified boundary conditions including the transversality
condition � f =0, leads to the optimal piston motion. In the
following section we determine this optimal motion and con-
sider different special cases.

III. OPTIMAL MOTION FOR MAXIMUM POWER
PRODUCTION

In this section we derive the optimal time dependent
piston motion for maximizing power ��=1�. For comparison
purposes we consider two extreme values of �, completely
externally dissipative friction, �=0, where all the heat of
friction is lost to the environment, and completely internally
dissipative friction, �=1, where all the heat of friction is
recycled into the working gas. For those two extreme cases
the optimal motion is derived by solving the differential
equations �7� and �8�. We introduce the parameter d,

d = �
Rn

mCv
for � = 0

R�n − 1�
mCv

for � = 1,	 �9�

in order to determine the optimal motion in both limits si-
multaneously.
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Without limiting piston acceleration, the optimal motion
is given by the following expression for the volume depen-
dence of the gas on time:

V*�t� = Vi
1 + �r1−d − 1�
t

�
�1/�1−d�

, �10�

where r=Vf /Vi is the compression ratio. The superscript as-
terisk indicates an optimal quantity. The optimal time depen-
dent piston speed is thus

V*�t� = V̇i
1 + �r1−d − 1�
t

�
�d/�1−d�

, �11�

where V̇i is the initial speed required to fulfill the final
boundary condition V�t=��=Vf; it is given by

V̇i =
Vi

�

r1−d − 1

1 − d
. �12�

It is worth noting that the optimal solution for the exter-
nally dissipative case ��=0�, where none of the energy is
recycled and with no temperature dependence of the viscos-
ity �n=0� �Ref. 5�, implies a constant process speed. The
same conclusion was arrived at for some specific
engines9–11,19 as well as for linear processes in general.5 In-
cluding a temperature dependence of viscosity, the optimal
motion depends on n and its sign. The optimal piston speed
may increase or decrease with time for different values of n.

In Fig. 1 we plot the optimal dimensionless speed �̇*

= V̇i
*� /Vi�r−1� for an externally dissipative friction ��=0� as

a function of dimensionless time t /� for a range of exponents
n. Along with the optimal motion the sinusoidal is shown for
comparison. The optimal piston motion is no longer constant
speed, and its behavior depends on the value of n and the
compression ratio r. Plots are shown for two compression
ratios: r=3, a typical value in Stirling engines, and r=8 for a
spark ignition �SI� engine �Otto�. In Fig. 2 a similar plot is
shown for the externally dissipative case �=1.

IV. FRICTIONAL DISSIPATION TERM

In order to find the frictional dissipation term, we need
to substitute the time dependent motion into the power and
energy expressions. First the time dependence of the internal
energy of the working gas is derived from Eq. �3�, and then
substituting it into the power expression, Eq. �2�, we find the
total work which includes the reversible term and the dissi-
pation term �friction�.

The energy equation is of the Bernoulli type, a nonlinear
first order differential equation. By a suitable substitution,
u=E1−n, it becomes a linear first-order differential equation
with the general solution for optimal motion,

E*�t� = Ei� V

Vi
�−R/C�
1 + ���1 − n�

�ViV̇i
m−1 �V/Vi� f − 1

f
�1/�1−n�

, �13�

with the new constant f defined as

f = 1 +
R

C�

�� − n� + �m − 1�d . �14�

Integration of the power equation �2� leads to the follow-
ing expression for work delivered in this process:

w* = Ei − Ef − �1 − ����
0

�

EnV̇*dt . �15�

Next we derive the frictional dissipation term resulting
from the different motion types.

A. Externally dissipative friction

In this case we substitute �=0 into the optimal energy
and work expressions �13� and �15� to arrive at

FIG. 1. Dimensionless optimal piston motion �̇*= V̇i
*� /Vi�r−1� vs dimen-

sionless time t*= t /� in the case of externally dissipative friction. The opti-
mal motion is the same for maximizing power and minimizing frictional
losses. The optimal piston motion is shown for different values of n=−0.5,
0, and 0.5, r=3 and 8, and m=2. The constant speed is optimal only in the
case of n=0.

FIG. 2. Dimensionless optimal piston motion �̇*= V̇i
*� /Vi�r−1� vs dimen-

sionless time t*= t /� in the case of internally dissipative friction. The opti-
mal motion is for the case of maximizing power. The optimal motion is
shown for different values of n=−0.5, 0, and 0.5 and m=2.5. The constant
speed is optimal only in the two special cases with n=1 and for minimal
losses with n=0.
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E*�t� = Ei� V

Vi
�−R/C�

. �16�

Note that this is the classical result for an adiabatic process
and as such is independent of the actual path followed. The
corresponding maximal work produced is then

w* = Ei − Ef − �Ei
n Vi

m

�m−1� r1−d − 1

1 − d
�m−1rf − 1

f
. �17�

For an imposed sinusoidal motion the internal energy is still
given by Eq. �16�, whereas the work is

wsin = Ei − Ef − �Ei
n Vi

m

�m−1	m−1�r − 1�mr−nR/C�B

��m + 1

2
,
m + 1

2
�2F1�m + 1

2
,
nR

C�

,m + 1;
r − 1

r
� ,

�18�

where B is the beta function and 2Fi is the hypergeometric
function.

From these derived formulas we define ge as the ratio
between the frictional dissipation of the sinusoidal motion
relative to the optimal motion,

ge =

	m−1�r − 1�mr−nR/C�B��m + 1�/2,�m + 1�/2�2F1
�m + 1�/2,
nR

C�

,m + 1;�r − 1�/r�
��r1−d − 1�/�1 − d��m−1�rf − 1�/f

. �19�

For temperature independent friction, n=0, this expression is
reduced to18

ge = 	m−1B�m + 1

2
,
m + 1

2
� . �20�

Expressions �19� and �20� provide quantitative estimates
of the potential improvement of the optimal motion com-
pared to the conventional sinusoidal motion. The effects on
viscosity from turbulent flow and varying temperature of the
working fluid are explicit in Eq. �19�. For any n value dif-
ferent from zero, ge is a function of the compression ratio r,
while for n=0 the compression ratio dependence disappears
and ge is simplified to Eq. �20�. For example, using Eq. �20�
with different values of m=2.0, 2.5, and 3.0, the frictional
losses for sinusoidal motion are 1.23, 1.41, and 1.64 times as
large as the frictional losses in the optimal motion, respec-
tively.

B. Internally dissipative friction

We substitute �=1 into Eq. �15� to get simply

w* = Ei − Ef . �21�

No energy is lost, all frictional losses are returned to the
working fluid. Then the optimality condition, Eq. �13�, re-
sults in

Ef
* = Ei�Vf

Vi
�−R/C�
1 + ��1 − n�ViV̇i

m−1 �Vf/Vi� f − 1

f
�1/�1−n�

�22�

and for sinusoidal motion

Ef ,sin = Ei�Vf

Vi
�−R/C�
1 + ��1 − n�Ei

n Vi
m

�m−1	m−1

��r − 1�mr�n−1�R/C�B2F1�1/�1−n�

. �23�

For small values of the frictional coefficient � we expand the
last expression up to first order in � and define gi as the ratio
of the friction term of the sinusoidal motion relative to the
optimal motion,

gi =
	m−1�r − 1�mr−�n−1�R/C�B��m + 1�/2,�m + 1�/2�2F1��m + 1�/2,�n − 1�R/C�,m + 1;�r − 1�/r�

��r1−d − 1�/�1 − d��m−1�rf − 1�/f
. �24�

For example, with r=3, n=0.5, and m=2.0, 2.5, and 3.0, the resulting values of gi are 1.23, 1.40, and 1.63, respectively.
At the same time the potential improvement of the maximal power output is 10% by applying the optimal motion compared
to the conventional motion.

These relations with �=1 are valid for any value of n�1. The case n=1 is special and must be treated separately, such that
the following expression may be derived. Equation �13� leads to
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Ef
* = Ei�Vf

Vi
�−R/C�

exp��V̇i
m�r − 1�� �25�

for the optimal motion with d=0. The sinusoidal motion
yields

Ef ,sin = Ei�Vf

Vi
�−R/C�

exp
�
Vi

m

�m−1	m−1

��r − 1�mB�m + 1

2
,
m + 1

2
�� . �26�

For this case gi is given by Eq. �20�, the same equation for
externally dissipative friction �=0 with n=0.

V. OPTIMAL MOTION FOR MINIMAL DISSIPATION

The optimal motions derived until now are for maximal
power ��=1�. The optimal motion for minimum frictional
losses ��=0� is identical to the optimal motion for maximiz-
ing power only in the case of externally dissipative friction
��=0, Eq. �8��, and thus the equations derived in the previ-
ous section are valid for this case. For internal dissipation the
optimal motion must be solved numerically for any n.

For the special case n=0 the solution is simple. Actually
minimizing frictional losses leads to the constant speed op-
timal motion in the case of internally dissipative friction. The
ratio between friction dissipation terms �sinusoidal/optimal�
is then given by

gi =
	m−1�r − 1��R/C� + 1�B��m + 1�/2,�m + 1�/2�2F1��m + 1�/2,�n − 1�R/C�,m + 1;�r − 1�/r�

r − r−R/C�
. �27�

For illustration consider the values n=0, r=3, and m=2.0,
2.5, and 3.0. The resulting gi are 1.24, 1.42, and 1.65, respec-
tively.

Although the optimal motions are very different �see Fig.
2�, the numerical values of gi for maximizing power produc-
tion are not much different from corresponding values of gi

for minimal losses.

VI. CONCLUSIONS

Optimal piston motion has been derived for adiabatic
processes in the presence of friction. The type of friction and
its effect on the optimal motion is studied. The dependence
of viscosity on temperature is taken into account in the
model such that the frictional dissipation depends on the in-
ternal energy to the power n and on the speed of the piston to
the power m. The optimal motion is derived for two different
objectives: maximizing power production and minimizing
frictional losses. The frictional losses may be dissipated ei-
ther externally or internally.

In the case of externally dissipative friction maximizing
power is equivalent to minimizing frictional losses. The re-
sulting optimal motion depends on the power n �temperature
dependence of viscosity�, and the optimal motion is no
longer constant speed motion,5 except in the case n=0 with-
out temperature dependence. The optimal speed may in-
crease or decrease with time depending on the sign of n.

In the case of internally dissipative friction, maximizing
power leads to an optimal motion different from the optimal
motion for minimizing frictional losses. In the latter case the
solution has to be found numerically. For the special case
n=0 the resulting optimal motion to minimize frictional
losses is again constant speed.

Analytic expressions for calculating the ratio of the fric-
tional dissipation term of the sinusoidal �conventional� mo-
tion relative to the optimal one are derived. This ratio de-
pends on the compression ratio r, the powers n and m, and

R /Cv. For typical values 3
r
8, 0
n
1, 2
m
3, and
R /Cv=2/3, this ratio is in the range of 1.24–1.65.
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