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including evaluation of the savings in entropy generation and the relative requirements 
for installed heating/cooling capacity. 
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I n t r o d u c t i o n  

Many energy-intensive heating and cooling processes are 
constrained to proceed in a fixed given time. Fixed production 
rates in industry are common examples. For a given energy 
consumption, different heating and cooling strategies generate 
different amounts of entropy. Although minimizing entropy 
generation is usually of little concern to the average individual 
consumer, it can be of practical value to factories with 
cogeneration facilities, or to those that reuse process heat at 
lower temperatures, or to the electric utility providing the 
energy. Consequently, minimum entropy generation has 
become an established engineering design criterion (Bejan 1982, 
1988). Closely related to this point of view is the availability 
or second-law analysis (Wepfer 1979; Gaggioli 1980; Moran 
1982, 1988). 

The present article is not the first to recognize the idea of 
optimal heating and cooling strategies. Earlier studies 
considered a model that in some ways is similar to the one 
analyzed here, except that the reservoir temperature was the 
single time-dependent temperature of a well-mixed stream of 
cooling or heating agent, and a linear heat transfer law only 
was assumed. The sources of irreversibility accounted for were 
the reservoir-system heat transfer and the dumping of the used 
stream into the environment. 

Bejan (1978) used this model in the context of energy storage 
to find the optimal duration or charging time that minimizes 
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total entropy generation, subject to the constraint of constant 
flow rate. Bejan and Schultz (1982) employed this approach 
to determine the minimum amount of fluid (e.g., cryogen) 
required during a fixed time period, as well as the associated 
optimal flow-rate history, temperature history, etc. These 
methodologies focus on finite-time effects (Andresen et al. 1984) 
and finite-size systems (Ondrechen et al. 1981 ) and consist of 
a mixture of classical thermodynamics, heat and mass transfer, 
and fluid mechanics (Bejan 1982, 1988). 

In this article, we examine heating and cooling strategies that 
are optimal in the sense of minimizing entropy generation. For 
specificity and clarity of presentation, we restrict our attention 
to a simple class of one-node heat transfer problems in which 
a system of uniform temperature T is heated by an external 
reservoir of temperature To, which is our control variable. In 
the process of deriving explicit formulas for optimal heating 
and cooling strategies, we accomplish the following. 

(1) We examine the sensitivity of these optimal strategies to 
the functional dependence on temperature of heat transfer 
law, taken as proportional to T ~ - T " .  The cases of 
common practical interest (De Vos 1985; Chert and Yan 
1989; Gordon 1990; Yan and Chen 1990) considered here 
are as follows: n = +1 (Newtonian heat conduction); 
n = - 1  (heat conduction from linearized irreversible 
thermodynamics or heat conduction in materials such as 
metals with a specific temperature-dependent thermal 
conductivity); and n = + 4 (radiative heat transfer). 

(2) We compare the typical heating and cooling strategies of 
constant reservoir temperature and constant heat flux 
against the optimal solution, including total entropy 
generated and the maximum temperatures required. This 
also affords an appreciation of the empirical wisdom that 
has evolved in certain common heating and cooling 
procedures. 
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(3) We prove that only for the specific cases of n = 4-1 is the 
observation of Salamon et al. (1980) valid that the optimal 
solution corresponds to a constant rate of entropy 
generation. For general nonlinear systems, the optimal 
heating/cooling strategy can differ significantly from that 
of constant rate of entropy generation (radiative heat 
transfer being a prominent example) and must be solved 
numerically from the governing equations. 

Illustrative quantitative examples are presented for all cases. 

Derivation of optimal heating/cooling 
strategies 

The simple one-node thermal model considered is illustrated 
in Figure 1. The only nonnegligible thermal resistance is at the 
heat transfer interface between system and external reservoir, 
where there is a known thermal conductance x. In the spirit of 
optimal control theory and some of our earlier studies (Salamon 
et al. 1980; Ondrechen et al. 1981 ; Gordon 1990), the reservoir 
temperature To(t)  can be varied at will and without loss as a 
function of time t in order to heat or cool the system at 
temperature T ( t ) .  (This is the most basic feature that 
distinguishes the present study from Bejan (1978) and Bejan 
and Schultz(1982)). 

Although this freedom might appear unrealistic to some 
readers, it actually is not. First, the completely unconstrained 
To(t)  that follows from optimal control theory provides the 
truly optimal path that the hardware designer should attempt 
to follow. Second, one can realistically tailor the time or position 
dependence of the reservoir (sometimes referred to as the source 
stream) temperature. This can be achieved, for example, by 
appropriate heat-exchanger design (Andresen and Gordon 
1992) with possibly uneven allocation of heat-exchanger 
surface; by variable-current infrared radiative heaters, etc. 
Finally, in the next two sections, we compare this optimal 
temperature path with the more standard constant reservoir 
temperature and constant heat-flux strategies. For specificity 
we present the derivations for heating only (T O > T), with the 
solutions for cooling involving a simple change of sign. 

The rate of heat transfer q is taken to have the general form 

q = x,(T"o - T") (1) 

with a generalized thermal conductance x,. For consistency of 
notation, x, is negative for negative n. Entropy generation S u 
occurs at a rate 

dt - q - = x,(T"o - T")  - (2) 

Reservoir: To(t ) 

System: 
C, T(t) 

Thermal Conductance = 
n 

h e a t  t rans fer  rate = q = (T n . T n) 
n o 

Figure I Schematic of one-node thermal model for a system 
exchanging heat with a variable-temperature (controllable) 
reservoir 

which is always nonnegative as required by the second law of 
thermodynamics. The change of system temperature T ( t )  is 
governed by 

d T  
q = x,(T~ - T") = C - -  (3) 

dt 

where C is the system's heat capacity. 
In a fixed time z, the system must be heated from a known 

initial temperature T(0) to a known final temperature T ( z ) .  
Our objective is to minimize S u subject to the constraint of 
Equation 3. One proceeds by defining the modified Lagrangian 
L with a time-dependent Lagrange multiplier 2 (t): 

(4) 

The independent variables are T, d T / d t ,  and To (and in 
principle dTo/dt,  which, however, does not appear in L). The 
Euler-Lagrange equations to determine the optimal strategy 
are then 

dL d dL 
- -  = 0  (5) 

8T  dt8 ( d T / d t )  

aL 
- 0 ( 6 )  

aTo 
For arbitrary n, there is no closed-form, analytic solution; 

Notation 

C Heat capacity of the system being heated/cooled 
L Lagrangian function 
n Exponent in the governing heat transfer law 
q Heat transfer rate 
S u Entropy generation of the universe 
So~pt Entropy generation ofthe universe using the optimal 

strategy 
t Time 
T Temperature of system being heated/cooled 
To External reservoir temperature, treated as the control 

variable 

AT Temperature difference through which the system is 
heated 

Greek symbols 

c~ Constant in general equations for optimal tempera- 
ture schedules 

fl Constant in equations for optimal temperature 
schedules for n = 1 
Constant in equations for optimal temperature 
schedules for n = - 1 

x, Generalized thermal conductance for the T" heat 
transfer law 

2 Lagrange multiplier 
T Process duration 
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rather it must be generated numerically. Equations 3 through 
6 can be reduced to two coupled equations in T ( t )  and To( t ) ,  
for example : 

T~o -- T" = aT(o "+ l)/z (7) 

nK.c~ T~o.+ I>/2 { T[ _ otT(on+ l) /2 } (n_ l)/n 
dWo c 
dt ~t(n -4- 1) 

n T~o - 1 T~o . -  1)/2 
2 

(8) 

with a constant ct that is determined from a knowledge of T (0) 
and T(T). With the solutions to Equations 7 and 8, S u is 
obtained by numerically integrating Equation 2: 

S ~ = x .  (r~o - r " )  - dt. (9) 

We proceed by analyzing these solutions for three cases of 
practical interest--n -- + 1, n = - 1, and n = 4 - - and  compar- 
ing the conventional heating strategies of constant reservoir 
temperature and constant heat flux against the optimal 
solutions. 

R e s u l t s  f o r  n = + 1 

Optimal solution 

For n = + 1, the governing equations in the previous section 
can be solved in closed form, yielding 

To( t )= f lT ( t  ) (10) 

T ( t ) = T ( O ) e x p {  x ' ( f l - 1 ) t }  (11) 

with fl being a constant that is determined from a knowledge 
of T(0) and T(T): 

C T ( z )  
fl = 1 + In (12) 

K~z T(O) 

The reservoir temperature (control variable) is then imple- 
mented according to Equations 10 to 12. The entropy 
generation using this optimal strategy So~pt is obtained by 
integrating Equation 9 with the solutions of Equations 10 to 
12, yielding 

K~ ( 3  - 1 )2T 
S~pt - ( 13 ) 

(The equilibrium solution offl = 1 or To(t  ) = T ( t )  yields zero 
entropy generation but cannot satisfy the constraint that the 
process be completed in a fixed given time r.) 

One can now compare ordinarily implemented heating 
strategies against the optimal solution in terms of (1) the 
time-dependent reservoir temperature To (t); (2) the entropy- 
generated S"; and (3) the maximum required reservoir 
temperature T~ "x (equivalently, installed capacity). For 
example, it has been noted that in single-pass heat exchangers, 
the commonly preferred choice of counterflow design happens 
to become identical to the optimal solution for judiciously 
chosen heat-exchanger parameters (Andresen and Gordon 
1992). Here we consider the general cases of constant reservoir 
temperature and constant heat-flux strategies. 

Fixed reservoir temperature 

For heating at fixed reservoir temperature, Equation 3 and the 
boundary conditions require that 

T ( t )  = T O - [To -- T(0)]  exp(--K~z/C) (14) 

T ( r ) -  T ( O ) e x p ( - K l z / C )  
T O = (15) 

1 - exp(--K1T/C ) 

Defining the given temperature difference as AT = 
T ( T )  - T (O) ,  we can express the entropy generation for the 
constant reservoir temperature strategy as 

S u = C ( l n { T ( T ) ~  - A T )  (16) 
\ ( T ( 0 ) J  T O 

As can easily be verified from the governing equations 
(Equations 3 and 9), Equation 16 is valid for all values of n, 
and not just for n = 1. 

Constant heat flux 

For constant heat flux, the corresponding solutions are 

A T t  
T ( t )  = T ( O )  + - -  

C A T  A T t  
To( t  ) =  T ( O )  + - -  + - -  

K1T T 

C A T  
r T ( : )  - -  

S, = CIn~T(T,~_ C l n t _ _  + K,T 
( T ( 0 ) J  - T ( 0 )  4 C A T J  

KIT 

=CIn~T(z)~_Cln~T°(z)~ 
(T(O)J  ( T o ( O ) )  

(17) 

(18) 

(19) 

Overall comparisons 

As a quantitative illustration of the relative merits of these 
alternative heating methods, we consider a low-temperature 
(AT = 100K) and high-temperature (AT = 600K) heating 
process starting at T (0) = 300 K. The three heating strategies 
are plotted in Figures 2a and 2b. Relative savings in entropy 
generation are summarized in Table 1. Constant heat flux is 
always superior to the constant reservoir temperature 
procedure, which can be verified by comparing Equation 16 
(by using Equation 15 in Equation 16) and Equation 19. 

The differences among the different heating strategies become 
more pronounced as x l z / C  (the ratio of process time to system 
relaxation time) is increased. For example, in the long-time 
limit of K I r / C  >> 1, the entropy generation for the constant 
reservoir temperature procedure remains finite, while the 
entropy generation for the optimal and constant heat-flux 
techniques both vanish, even though at a finite ratio. This limit 
then affords an upper bound on the superiority of the optimal 
heating strategy. For the lower-temperature process considered 
here, the optimal strategy is only 1% superior (in 
entropy-generation savings) compared to constant heat-flux 
operation in the long-time limit, whereas both are infinitely 
better than constant reservoir temperature heating. For the 
higher-temperature process, the corresponding figure is 11%. 

The optimal strategy is a continuous, monotonic function 
that would appear to be easy to implement. The key pragmatic 
difficulty is the need to accommodate a larger range of reservoir 
temperatures than for the common, simpler heating strategies. 
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Figure 2(a) Reservoir temperature T O versus time for heating the 
system with C/K~ = 1000s from 300 K to 400 K, i.e., A T =  100 K, 
for the three strategies of (1) constant reservoir temperature To; 
(2) constant heat flux q; and (3) optimal path. The heat transfer 
law i s q = ~ ( T  o - T ) , i . e . , n = l  
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Figure 2 ( b ) 
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As in Figure 2 (a ) ,  but for heating the system from 

300 K to 900 K, i.e., AT = 600 K 

strategy : 
1 1 

r To 

Ix-dyt T(t) = T(O) + - -  
C 

(20) 

(21) 

(recall r_  t < 0 by definition), where y is a constant determined 
from a knowledge of AT:  

CAT 
y Ix-l[ z (22) 

One immediately sees from Equation 20 that the optimal 
solution is the same as that of constant heatflux. For the optimal 
solution, Equations 20 to 22 applied to Equation 9 yield the 
entropy produced : 

C2AT 2 
SUpt - -  ( 2 3 )  

vlx-xl 
For operation at constant reservoir temperature, the value of 

To can be determined from Equation 3 to be the solution to 
the following equation : 

T2 l n { ~ -  T(z)~ Ix_,lz + ToAT= - - -  (24) 
T ( 0 ) )  C 

As noted in the previous section, the entropy generation in this 
case is independent of n and is given by Equation 16. 

Comparative plots are presented in Figures 3a and 3b. In 
order to generate heat transfer rates that are comparable to 
those of the n = + 1 case, one must change C/Ix- 11 with T(z). 
Accordingly, a markedly reduced value of C/Ix-tl is selected 
for the high-temperature process, relative to that for the 
low-temperature process. Table 1 presents the relative savings 
in entropy generation. 

R e s u l t s  f o r  n = 4 

Table 1 Relative savings in entropy generation' 

. o Su / S  ~ n AT (K) S . . . . . . . .  q / S o p t i m , ]  . . . . . . . . .  TO! optimal 

1 100 1.00 1.08 
1 600 1.02 1.08 

- 1 100 1.00 (exact) 1.20 
- 1 600 1.00 (exact) 1.55 

4 100 1.00 1.02 
4 600 1.01 1.05 

"Comparison among three heating strategies: (1) optimal; (2) 
constant heat flux q; and (3) constant reservoir temperature T 0. See 
captions of Figures 2 -4  for system parameters. 

Comparison of the three strategies considered shows that paths 
that generate more entropy require smaller installed heating 
capacities. As will be shown in the next two sections, these 
latter observations also pertain to the cases of n = - 1  and 
n = 4 .  

R e s u l t s  f o r  n = - 1  

For  n = - 1, the governing equations of the second section of 
this article yield closed-form solutions for the optimal heating 

Unlike the cases of n = -t-1, closed-form solutions do not 
emerge for the case ofn = 4 (radiative heat transfer). One must 
solve Equations 7 and 8 numerically for the optimal heating 
strategy and then integrate Equation 9 numerically to obtain 
the minimal possible entropy generation. 

At constant heatflux, the solutions for T (t) and T o (t) follow 
from Equation 3: 

ATt 
T(t) = T(0)  + - -  (25) 

T 

C (26) To(t) = {(  T(o) + ATt)* +--A~Tz }1/4 
X 4 

Equation 9 is then integrated numerically to obtain S u. 
At constant reservoir temperature, the value of To is obtained 

by solving Equation 3, which affords To as the solution to the 
following equation : 

4x, T3oZ_lnF{To+ T ( ' c ) } { T  o -- T ( 0 ) } ]  

c L{ To + ~ ~o - T ( - - ~ J  

+ 2 t a n - ' ) ' T ( ~ ) ~ -  2 t a n - ' ~ ' T ( 0 ) ~  (27) 
( T o . )  ( T o J  

Sample results for the low- and high-temperature heating 
processes are shown in Figures 4a and 4b. In order to generate 
heat transfer rates that are comparable to those of the n = 1 
case, a reduced value of C/K, is selected for the high- 
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As in Figure 3 ( a ) ,  but with AT = 6 0 0  K. C/l~-,I = 

temperature process relative to that for the low-temperature 
process. As evidenced by Table 1, differences in entropy 
generation among the three strategies considered here are quite 
small and are less pronounced than for the other heat transfer 
laws. 

Opt imal  s t r a t e g y  v e r s u s  c o n s t a n t  rate of  
e n t r o p y  g e n e r a t i o n  

Salamon et al. (1980) proved that for any linear finite-time 
process, the strategy that minimizes entropy generation is the 
one that corresponds to a constant rate of entropy generation. 
This proof pertains directly to the n = +1 case. Indeed, 
substitution of the optimal solution (Equation 10) into 
Equation 2 confirms that it is equivalent to a constant rate of 
entropy generation. Is this observation valid for nonlinear heat 
transfer? One can prove that it is not. 

The optimal strategy obeys Equation 7: 

T = { T ~  - -  ~T~o "+ ,)/2 } , / .  ( 2 8 )  

where ct is a constant. Substituting Equation 28 into the 
expression for the rate of entropy generation (Equation 2), one 
obtains 

d S  ~ 
- x.c~T~o"-l>/2{ - 1  + [1 - c~T~o 1-"}/u] -1/.} (29) 

dt 

which is not constant except for n = + 1. Hence in general, for 
non-linear problems, a constant rate of entropy generation is 
not the optimal strategy. 

S u m m a r y  

Many energy-intensive heating and cooling procedures are 
carried out either at constant heat flux or by using a constant 
temperature source (reservoir). In industrial and electric-utility 
settings, these processes are often constrained to proceed in a 
given fixed time (fixed production rates). Although energy 
consumption may be fixed, different heating and cooling 
strategies generate differing amounts of entropy. 

We have derived the optimal heating/cooling strategy that 
minimizes entropy generation for a common type of finite-time 
heat transfer process, approximated by a one-node thermal 
model. The objective and methodology of minimizing entropy 
production in energy-intensive processes are not new (Bejan 
1978; Wepfer 1979; Salamon et al. 1980; Gaggioli 1980; 
Ondrechen et al. 1981; Moran 1982; Bejan 1982; Bejan and 
Schultz 1982; Andresen et al. 1984; De Vos 1985; Moran and 
Shapiro 1988; Bejan 1988; Chen and Yan 1989; Gordon 1990; 
Yan and Chen 1990; Andresen and Gordon 1992), and neither 
is the aim of developing optimal heating and cooling 
procedures. However, we add a new twist to the optimization 
by (1) allowing a controllable time-varying reservoir; (2) 
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As in Figure 4 ( a ) ,  but with A T =  6 0 0  K C / x  4 = 
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considering the sensitivity to heat transfer law; and (3) 
quantifying the superiority of optimal heating and cooling 
strategies relative to conventional procedures. 

Our derivation pertains to a generalized heat transfer law 
where heat flux is proportional to T [ -  T" (To = external 
reservoir temperature, which is the time-dependent control 
variable, and T = system temperature). Cases of practical 
interest noted to date include n = + 1, n =  - 1, and n = 4 (De 
Vos 1985; Chen and Yan 1989; Gordon 1990; Yan and Chen 
1990), for all of which we have presented quantitative 
illustrative examples. 

It had been previously proposed that optimal paths are those 
that generate entropy at a constant rate (Salamon et al. 1980). 
The original proof was developed for linear systems only. We 
have proven that this theorem is correct only for the cases 
n = + 1 with significant deviations for nonlinear heat transfer 
such as radiation. 

The potential savings in entropy generation achievable with 
the optimal strategy increase as the ratio of process time to 
system relaxation time increases. These savings also become 
more pronounced as heat transfer grows progressively 
nonlinear and as temperature gradients increase. 

Operating at a fixed reservoir temperature turns out 1o be 
markedly inferior to the optimal strategy as well as to constant 
heat-flux operation. For  the kinds of illustrative examples 
considered here, working at constant heat flux is typically only 
1-10% inferior to the optimal strategy. 

The optimal solutions for To (t) are continuous monotonic 
functions that should be easy to implement. Their major 
practical drawback is that they require a larger installed 
heating/cooling capacity, in that a larger than normal range 
of reservoir temperatures is required. The magnitude of this 
incremental need can be seen in Figures 2a to 4b. Considering 
the three strategies of constant reservoir temperature, constant 
heat flux, and optimal operation, one sees that the paths that 
generate more entropy benefit from necessitating small installed 
capacities. Hence, the eventual selection of economically 
optimal strategies will depend on the relative costs of avoided 
entropy generation versus installed capacity. The solutions 
presented here provide a quantitative basis for such evaluations. 
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