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Abstract  Finite-time thermodynamics is the extension of traditional reversible 
thermodynamics to include the extra requirement that the process in question goes 
to completion in a specified finite length of time. As such it is by definition a 
branch of irreversible thermodynamics, but unlike most other versions of 
irreversible thermodynamics, finite-time thermodynamics does not require or 
assume any knowledge about the microscopics of the processes, since the 
irreversibilities are described by macroscopic constants such as friction 
coefficients, heat conductances, reaction rates and the like. Some concepts of 
reversible thermodynamics, such as potentials and availability, generalize nicely to 
finite time, others are completely new, e.g. endoreversibility and thermodynamic 
length. The basic ideas of finite-time thermodynamics are reviewed and several of 
its procedures presented, emphasizing the importance of power and rate of entropy 
production. Finally, its impact on the global optimization algorithm simulated 
annealing is outlined. 

 
 
1.  Introduction 
1.1  Motivation 
 From its infancy over 150 years ago, thermodynamics has provided limits on work or heat 
exchanged during real processes. The first problem treated in a systematic way was how much work a 
steam engine can produce from the burning of one ton of coal. With true scientific generalization Sadit 
Carnot concluded that any engine taking in heat from a hot reservoir at temperature TH has to deposit 
some of that heat in a cold reservoir (e.g. the surroundings), whose temperature we call TL; the largest 
fraction of the heat which can be converted into work is 

ηC = 1 – 
TL
TH

 , (1.1) 

traditionally known as the Carnot efficiency. This expression contains the two basic ingredients of a 
thermodynamic limit: a) it applies to any process converting heat into work; and b) it is an absolute 
limit, i.e. no process, however ingenious, can do better. 
 As thermodynamic theory developed, emphasis changed from process variables like work and heat 
exchanged to state variables like entropy and chemical potential. A bridge between the two are the 
thermodynamic work potentials, such as enthalpy H for isobaric processes or the Gibbs free energy G 
for isothermal, isobaric processes. They are defined such that their changes provide upper bounds on 
the work a process can supply or lower bounds on the work required to drive a process. Gibbs 
introduced the concept of ‘available work’ as the maximum work that can be extracted from a system 
allowed to go from a constrained, internally equilibrated state to a state in equilibrium with its 
surroundings. This quantity is used more and more frequently in engineering contexts (Keenan 1941; 
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Gaggioli 1980) under the names ‘availability’ in the U.S. and ‘exergy’ in Europe. For a system 
relaxing to an ambient temperature T0, pressure P0, and chemical potentials µ0i it is given by 

A = U + P0V – T0S – ∑
i

 µ0iNi  (1.2) 

and is thus not a state function in the usual sense of depending only on variables of the system; the 
availability depends on the intensive variables of the environment as well. 
 Such criteria of merit have long been common currency for thermodynamic studies in physics, 
chemistry, and engineering. They all share one characteristic: The ideal to which any real process is 
compared is a reversible process. Stated in a different way, traditional thermodynamics is a theory 
about equilibrium states and about limits on process variables for transformations from one 
equilibrium state to another. Nowhere does time enter the formulation, so these limits must be the 
lossless, reversible processes which proceed infinitely slowly and thus take infinite length of time to 
complete. However, referring back to the original question addressed by Carnot, who is interested in 
an engine which operates infinitely slowly (and thus produces zero power) — or any other process 
with zero rate of operation, for that matter? 

 In order to obtain more realistic limits to the performance of real processes finite-time 
thermodynamics is designed as the extension of traditional thermodynamics to deal with processes 
which have explicit time or rate dependences. These constraints, of course, imply a certain amount of 
loss, or entropy production, which is at the heart of the question posed above. 

 
1.2  Early developments 
 In the course of developing finite-time thermodynamics we discovered that a few isolated papers 
already had considered different aspects of processes operating at nonzero rates. The first of these was 
the important work of Tolman and Fine (1948) who put the Second Law of thermodynamics into 
equality form, 

W = ∆A – T0 ⌡⌠
ti

tf
 Ṡtot  dt (1.3) 

by subtracting the work equivalent of the entropy produced during the process from the reversible 
work, i.e. the decrease of system availability, as defined in eq. (1.2). The superscript dot indicates rate, 
and the integral limits are the initial and final times of the process. This is a quantification of the ‘price 
of haste’. 

 Another model has evolved into a classic paradigm of systems operating in finite time. This is the 
model of Curzon and Ahlborn (1975), a Carnot engine with the simple constraint that it be linked to its 
surroundings through finite heat conductances. Figure 1 illustrates the slightly more general 
endoreversible system with the triangle signifying any reversible engine. (The term endoreversible 
means ‘internally reversible’, i.e. all irreversibilities reside in the coupling of flows to the 
surroundings. In this case that means resistance to heat transfer and possibly friction.) It turns out that 
the results derived by Curzon and Ahlborn explicitly for an interior Carnot engine are equally valid for 
a general endoreversible system. The maximum efficiency of their engine is of course  ηC = 1 –
 TL/TH, obtained at zero rate so that losses across the resistors vanish, but these authors showed that, 
when the system operates to produce maximum power, the efficiency of the engine is only 



Tools of finite time thermodynamics 3 

ηw = 1 – 
TL
TH

  . (1.4) 
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Figure 1.  An endoreversible engine has all its 
losses associated with its coupling to the 
environment, there are no internal 
irreversibilities. This is illustrated here as 
resistances in the flows of heat to and from the 
working device indicated by a triangle. These 
unavoidable resistances cause the engine proper 
to work across a smaller temperature interval, 
[Th;Tl] than that between the reservoirs, 
[TH;TL], one which depends on the rate of 
operation. 

 
Besides the simplicity of the expression it is remarkable that it does not contain the value of the heat 
conductances. A closer analysis of this expression and its relationship to the effects of finite size heat 
reservoirs is presented by Gordon (1989). The initial development of finite-time thermodynamics was 
primarily inspired by Curzon and Ahlborn’s paper. 

 In the next section we will see how it is possible to derive bounds on finite-time processes without 
knowing their detailed time paths. Following that we derive the optimal paths for a few examples. 

 
 
2.  Performance bound without path 
 The smallest amount of information one can ask for concerning the performance of a system is a 
single number, e.g. the work or heat exchanged during the process, its efficiency, or any other figure 
of merit. In most cases this can be calculated without knowledge of the detailed path followed and is 
then computationally much simpler to obtain. 

 
2.1  Generalized potentials 
 In traditional thermodynamics potentials are used to describe the ability of a system to perform 
some kind of work under given constraints. These constraints are usually the constancy of some state 
variables like pressure, volume, temperature, entropy, chemical potential, particle number, etc. Under 
such conditions the decrease in thermodynamic potential P from state i to state f is equal to the amount 
of work that is produced when a reversible process carries out the transition, and hence is the upper 
bound to the amount of work produced by any other process, 

W ≤ Wrev = Pi – Pf. (2.1) 



Finite-Time Thermodynamics 4 

In this section we will show that the constraints need not simply be the constancy of some state 
variable, and that the potentials may be generalized to contain constraints involving time (Salamon et 
al. 1977). The procedure will be a straight forward extension of the Legendre transformations 
(Hermann 1973) used in traditional thermodynamics (Callen 1985; Tisza 1966), and we will start with 
such an example. 

 In a reversible process heat and work can be expressed as inexact differentials, 

dQ = TdS,        dW = PdV, (2.2) 

i.e. they cannot by themselves be integrated, further constraints defining the integration path are 
required. Such a constraint could be that the process is isobaric,  dP = 0. One can then add a suitable 
integrating zero-term, xdP to make dW an exact differential. The obvious choice is  x = V, 

dW = PdV = PdV + VdP = d(PV), (2.3) 

such that the isobaric work potential becomes  PW = PV. Similarly the isobaric heat potential  
PQ = U + PV  is obtained from 

dQ = TdS = dU + PdV = dU + PdV + VdP = d(U + PV), (2.4) 

where the First Law of thermodynamics 

dU = TdS – PdV (2.5) 

has been used. Table 1 shows the results of this procedure for the classical examples. 

 
 

Table 1.  The classical thermodynamic potentials for the process variables of work  dW = PdV  and 
heat  dQ = TdS. 

 
 Process Zero along Integrating Work Heat 
 type process term potential potential 
       
 Isobaric dP VdP PV U + PV 
 Isothermal dT SdT TS – U TS 
 Isochoric dV –PdV 0 U 
 Isentropic dS –TdS –U 0 
 
 
 Now, the constraints need not be the constancy of one of the state variables. Consider a balloon 
with constant surface tension α. In equilibrium with an external pressure Pex such a sphere of radius r 
has an internal pressure 

P = Pex + 
2α
r  , (2.6) 

which can be rearranged into 
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(P – Pex)V1/3 = 2α ⎝
⎛

⎠
⎞4π

3  
1/3

. (2.7) 

Since the right hand side of this equation is a constant, this means that  (P – Pex)V1/3  is an integral of 
motion for the fluid inside the balloon. We can therefore add a suitable amount of  d[(P – Pex)V1/3] 
(=0)  to dW to make it exact, 

dW = PdV = PdV + 32  V2/3 d[(P – Pex)V1/3] 

      = d[12  V(3V – Pex)]. (2.8) 

Thus the work done by the coupled system balloon + fluid is given by the decrease in the potential  
PW = 12 V(3V – Pex), regardless of path followed. 

 In its most general form the Legendre transformation can be used to calculate a potential PB for 
the arbitrary process variable B, expressible as a path integral in terms of generalized forces fi and 
displacements xi, 

B = ∑
i

 ⌡⌠ fi dxi  = ∫ ⋅ xf d . (2.9) 

B will usually be work, and vector notation is used for compactness. To find PB, one adds to f⋅dx an 
integrating term g⋅dy, where dy is necessarily zero as a result of the constraints defining the process. 
Note that  dy = 0  may involve time and could come from a condition in the form of a differential 
equation as well as from the more familiar thermodynamic condition of a constant variable, as used in 
the example above. Hence the differential form  dy = 0  is used rather than the integrated form  
y = constant, since y itself may not exist. The mathematical problem of finding PB has two steps, 
finding a function g which makes  dω = f⋅dx + g⋅dy  an exact differential dPB, and then integrating to 
get PB itself. The first step involves the Cauchy-Riemann condition that dω has equal cross derivatives 
with respect to the free state variables, e.g. a and b: 
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a
. (2.11) 

With f, dx, and dy known, this is the equation from which g may be obtained. In the usual case of  
f = P, dx = dV, a = V, and  b = P, the right hand side of eq. (2.11) simplifies to 1. The second step in 
finding PB, the integration of dPB, is, of course, only unique within a constant of the motion; i.e. two 
methods of integration may yield two different potentials PB and PB’, but their variations will always 
be the same, ∆PB = ∆PB’. 
 Whereas for reversible processes there is no question that thermodynamic potentials exist, because 
the processes can always be reversed or go by way of an arbitrary third state, this is not obvious for 
generalized potentials with built-in time dependence and possible loss terms. In generalizing the 
Legendre transformation above, we have implicitly assumed the existence of a potential or, 
equivalently, a solution to eq. (2.11). The conditions for existence are (Salamon et al. 1977): 
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a) the process is quasistatic, and 
b) the process variable can be expressed as a path integral [eq. (2.9)]. 
The quasistaticity is equivalent to saying that the relaxation times of the system are negligible 
compared to the time scale of the process. In other words, the system is not required to be in 
equilibrium with its surroundings at all times, but all state variables must be defined (make sense) at a 
countable pointset along the path. The second condition is similar in content, because this seemingly 
trivial condition is violated when one tries to describe the extraction of work from a system at a rate 
faster than that system can equilibrate internally (think of a combustion process). In such a case 
thermodynamic variables lose their meaning, and one must go to a definition of work in terms of 
energy transfer at the microscopic level, which sometimes can be too complex to be useful. 
Nevertheless, work and availability can be defined for some systems, such as simple lasers whose 
operation depends on changes in populations of specific quantum states (Geusic et al. 1967). Another 
approach relies on the information-theoretic ‘maximum entropy’ formalism (see e.g. Levine and 
Tribus 1979). 
 
2.2  Finite-time availability 
 One of the more powerful results in finite-time thermodynamics is the definition of a finite-time 
availability (Andresen et al. 1983). As mentioned in Sect. 1.1, the traditional availability A of a system 
in contact with given surroundings is a state function with the quality that the decrease in its value in 
going from state i to state f is the maximum (and hence reversible) work that can be extracted during 
that process. The finite-time availability A retains this property and simply adds that the process is 
restricted to operate (go to completion) during time  τ = tf – ti. Then 

A = Wmax(τ) = max 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

A(ti) – A(tf) – T0 ⌡⌠
ti

tf
 Ṡtot dt  , (2.12) 

where the last equality uses the Tolman-Fine (1948) form of the Second Law of thermodynamics, 
eq. (1.3). 
 The extension may seem trivial, but the principal content lies in the way the maximization is 
carried out, or rather restricted. It must be carried out within the constraints imposed on the process, 
temporal or otherwise. These constraints in effect define a generic model which constitutes the 
confines within which we expect to be able to modify our real system in order to improve its 
performance. The constraints in such a generic model should not be excessively detailed, but only 
contain the essential loss terms and limiting factors in the process, otherwise the calculations will 
become unwieldy. Of course, if one is going to use finite-time availability to compare the performance 
of two different processes, they must be represented by the same generic model. Otherwise a path 
allowed in one may not be available to the other process, and such a restriction always costs 
performance. Losses are not always detrimental to the performance of a system if they open up new 
pathways — actually some processes depend on irreversibilities for their very existence (e.g. Wheatley 
et al. 1983). 
 In addition to the above considerations, the maximum search in eq. (2.12) can either be 
constrained to exactly reach a given final state at time tf (the initial state is always considered known), 
in which case ∆A is fixed, and the optimization becomes one of minimizing the entropy production, or 
also the final state may be included in the optimization, in which case A must be evaluated by optimal 
control. If the final state is specified, a solution may not exist if τ is too short, since only a certain set 
of states can be reached from a given initial state in time τ. In addition, the finite-time availability does 
not necessarily have ∆A as its limit for very long times, because the system may contain internal 
relaxation processes which remain irreversible even for very slow operation. If there is a direct heat 
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leak from the system reservoir to the surroundings, then a long process time may even reduce A to 
zero. 
 As defined, the finite-time availability is as general as the traditional availability, i.e. it can be 
applied to any thermodynamic process. Andresen et al. (1983) report an optimal control calculation of 
the finite-time availability for a work-producing system with competing internal relaxation which can 
be interpreted as heat engines, internal molecular degrees of freedom, a hydraulic system, or a 
chemical reaction, simply by changing nomenclature. 
 
2.3  Non-endoreversible processes 
In all fairness it should be said that not all real processes are well described by an endoreversible 
model. Some operations, like large air conditioning systems, have internal losses that far outweigh 
losses in the couplings to the surroundings (Gordon and Ng 1994, 2000). In those cases obviously the 
Curzon-Ahlborn procedure and its extensions yield unrealistic results. However, it is possible to turn 
the models around and still get nice simple efficiency expressions with predictive power for where 
operational problems are located (Gordon and Ng 2000). 
 
2.4  Thermodynamic length 
 In an effort to develop a more direct and transparent way of calculating all the usual partial 
derivatives in traditional thermodynamics Weinhold (1975abcd, 1978) proposed using vector products 
between vectors in the abstract space of equilibrium states of a system, represented by all its extensive 
variables Xi. The products were defined relative to 

MU = 
⎩
⎨
⎧

⎭
⎬
⎫∂2U

∂Xi∂Xj
  (2.13) 

as the metric, where U is the internal energy. However, second derivatives are usually identified as 
curvatures and, as such, should be interpreted as availabilities in Gibbs space (U as a function of all 
the other extensive variables). This lead us to seek another interpretation of pathlengths calculated 
with Weinhold’s metric, now called thermodynamic lengths, and we (Salamon et al. 1980a) found that 
they always are changes in some molecular velocities, depending, of course, on the constraints of the 
process (isobaric, isochoric, etc.). The geometry is illustrated in Fig. 2. 
 Subsequently Salamon and Berry (1983) found a connection between the thermodynamic length 
along a process path and the (reversible) availability lost in the process. Specifically, if the system 
moves via states of local thermodynamic equilibrium from an initial equilibrium state i to a final 
equilibrium state f in time τ, then the dissipated availability –∆A to leading order in the rate is 
bounded by the square of the distance (i.e. length of the shortest path) from i to f times ε/τ, where ε is 
a mean relaxation time of the system. If the process is endoreversible, the bound can be strengthened 
to 

–∆A ≥ 
L2ε

τ  , (2.14) 

where L is the length of the traversed path from i to f. Equality is achieved at constant thermodynamic 
speed  v = dL/dt  corresponding to a temperature evolution given by (Nulton and Salamon 1988) 

dT
dt   = – 

vT
ε C

  , (2.15) 
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Figure 2.  The state space of a thermodynamic system represented by the internal 
energy U and the other extensive variables X1 and X2. The paraboloid illustrates 
the equilibrium states of the system, while a tangent plane represents an 
environment with its constant intensive variables. A system initially in state i can 
move toward equilibrium with the environment at the tangent point f along an 
infinite number of internal equilibrium paths. The length of the shortest of these 
(dotted) is determined by the Weinhold metric, but the actually traversed path 
(solid) may be longer. The availability dissipated in the process is bounded by the 
square of this distance times an internal relaxation time and divided by the duration 
of the process. 

 
 
where C is the heat capacity of the system. For comparison, the bound from traditional 
thermodynamics is only 

–∆A ≥ 0. (2.16) 

 An analogous expression exists for the total entropy production during the process: 

∆Su ≥ 
L2ε

τ  . (2.17) 

The length L is then calculated relative to the entropy metric 

MS = – 
⎩
⎨
⎧

⎭
⎬
⎫∂2S

∂Xi∂Xj
  (2.18) 

which (when expressed in identical coordinates!) is related to MU by (Salamon et al. 1984) 
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MU = –T0MS, (2.19) 

where T0 as usual is the environment temperature. In statistical mechanics, where entropy takes the 
form 

S({pi}) = – ∑
i

 pi ln pi , (2.20) 

the metric MS is particularly simple, being the diagonal matrix (Feldmann et al. 1985) 

MS = – 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫1

pi
 . (2.21) 

 The same procedure of calculating metric bounds for dynamic systems has been applied to coding 
of messages (Flick et al. 1987) and to economics (Salamon et al. 1987). 
 More recently (Andresen and Gordon 1994) we have relaxed a number of the assumptions in the 
original work, primarily those restricting the system to be close to equilibrium at all times and the 
average form of the relaxation time ε. The more general bound replacing eq. (2.17) then becomes 
 

∆Su ≥ 

2

d
d
dU
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1

d
dU
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11 f

i
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⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
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θ

+
ξΞ ∫

ξ

ξ

 (2.22) 

with  Ξ = ξf – ξi  being the total duration of the process in natural dimensionless time units, 

dξ = dt/ε(T), (2.23) 

and where we have defined 

θ(T) = 1 + 
T

2 C 
∂C
∂T   . (2.24) 

 The equality (lower bound) in eq. (2.22) is achieved when the integrand is a constant, i.e. when 

dSu

dξ   = constant. (2.25) 

Consequently, constant rate of entropy production, when expressed in terms of natural time, is the path 
or operating strategy which produces the least overall entropy. 

 One can express the optimal path in a form similar to eq. (2.15): 

dT
dt   1  +  

θ(T) ε (dT/dt)
T   +  ...   =  constant × 

T
ε C

   . (2.26) 

The constant thermodynamic speed algorithm, eq. (2.15), is thus the leading term of the general 
solution in an expansion about equilibrium behavior. 
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3.  Optimal path 
3.1  Optimal path calculations 
 A knowledge of the maximum work that can be extracted during a given process, e.g. calculated 
by one of the procedures described in the previous section, may not by itself be sufficient. One may 
also want to know how this maximum work can be achieved, i.e. the time path of the thermodynamic 
variables of the system. The primary tool for obtaining this path is optimal control theory. 
 We have a system described by n state variables  x = (x1, x2, ..., xn), e.g. volume, pressure, 
temperature etc. For this system we want to maximize a certain function, the objective function, which 
we for full generality write as an integral over the full cycle of the process, 

∫
τ

0
),,,( dtA K&&& xxx . (3.1) 

Note that it may depend not only on the state variables but also on any of their derivatives. In this 
expression we have written the path parameter as time, but really it can be any parameter which is 
convenient for the problem. To achieve the extremum we have at our disposal k controls  c = (c1, c2, 
..., ck) which can be varied instantly and at no cost. Usually each control is limited to a certain range, 
[cmin; cmax] or the physical situation may require it to be positive (e.g. only positive reservoir 
temperatures). During the process certain constraints must be obeyed like energy or mass conservation 
and the evolution equations of the state variables, 

0),,,( =K&&& xxxB . (3.2) 

Averaged constraints, i.e. true only on average over the cycle, are also possible and are represented by 
integrals like eq. (3.1). 

 Solving such an extremum problem with constraints is usually very difficult. It becomes a little 
easier if we can remold the problem to be without constraints. This can be achieved by defining a 
Hamiltonian 

),,,(),,,(AH K&&&K&&& xxxBpxxx ⋅+=  (3.3) 

which incorporates the constraints through a new set of functions  p = (p1, p2, ..., pn)  conjugate to the 
state variables. Possible solutions, just like in classical mechanics, then satisfy Hamilton’s equations, 

i

i
p
H

dt
dx

∂
∂

=  (3.4a) 

i

i
x
H

dt
dp

∂
∂

−= , (3.4b) 

one pair of equations for each pair of independent state and conjugate variables. Note that eqs. (3.4a) 
are just a restatement of the constraints eq. (3.2). 

 Eqs. (3.4) naturally contain the (so far unknown) controls c. Those may often be found by 
application of the very powerful Pontryagin maximum principle which states that if x*, c*, and p* are 
the fully optimal state functions, controls, and conjugate functions, then 

*),*,(H*)*,*,(H pcxpcx ≥ , (3.5) 
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i.e. if the state and conjugate functions are still optimal and only the controls are suboptimal, the 
Hamiltonian can be no larger than the Hamiltonian of the fully optimal trajectory. With this principle 
in hand one can often argue that the optimal controls c* must assume one of their extreme values 
whenever certain combinations of the variables are either positive or negative. For a more detailed 
description of this procedure see e.g. Rubin (1979). 

 With these values of the controls solutions of eqs. (3.4), which are called branches or interior 
solutions, are still only possible extremal solution, because boundary solutions may be even better. 
This is equivalent to finding extremal values of a simple function of a single variable f(x) where we 
need to set the derivative  df/dx = 0  as well as evaluate boundary values. 

 The next step in the optimization is to piece these possible branches together to a full solution. The 
requirements are that the Hamiltonian is constant and that all state and conjugate functions are 
continuous also at switchings from one branch to another, although the controls are free to have 
discontinuities. This piecing together of branches is usually not unique. It may have one, several or no 
solutions, and the only way to find out which is the optimum is to try them all. 

 To summarize let me point out that in order to set up the optimal control problem one must 
specify: 
• the controls, i.e. the variables that can be manipulated by the operator (they may be a volume, rate, 

voltage, heat conductance, etc.); 

• limits on the controls and on the state variables, if any (in order to avoid unphysical situations 
such as negative temperatures and infinite speeds); 

• the equations that govern the time evolution of the system (they will usually be differential 
equations describing heat transfer rates, chemical reaction rates, friction, and other loss 
mechanisms); 

• the constraints that are imposed on the system (e.g. conserved quantities, the quantities held 
constant, or any requirements on reversibility. The constraints may either be differential, 
instantaneous i.e. algebraic, or integral i.e. not obeyed at each point but over the entire interval); 

• the desired quantity to be maximized, called the objective function (usually expressed as an 
integral); and finally 

• whether the duration of the process is fixed or part of the optimization. 
 Typical manipulation usually leads to a set of coupled, non-linear differential equations for which 
a qualitative analysis and a numerical solution are the only hope. Thus answering the more demanding 
question about the optimal time path rather than the standard question about maximum performance 
requires a considerably larger computational effort. On the other hand, once the time path is 
calculated, all other thermodynamic quantities may be calculated from it, much like the wave function 
is the basis of all information in quantum mechanics. More extensive explanations of optimal control 
calculations are widely available (see e.g. Boltyanskii 1971; Tolle 1975; Leondes 1964). 

 
3.2  Criteria of performance 
 Efficiency, the earliest criterion of performance for engines, measured how much water could be 
pumped out of a mine by burning a ton of coal. Other familiar criteria include effectiveness, change of 
thermodynamic potential, and loss of availability, all of which are measures of work. Potentials for 
heat can also be defined (see Sect. 2.1) but are less common, and we have used the minimization of 
entropy production in a separate study (Salamon et al. 1980b). 

 The Curzon-Ahlborn analysis and many of our own analyses use a quite different criterion, that of 
power. This quantity is of course zero for any reversible system, and maximizing power forces us to 
deal with systems operating at finite rates. Other criteria of performance are the rate of entropy 
production and the rate of loss of availability. Entropy production was a function introduced in the 
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earliest thinking about irreversible thermodynamics (Onsager 1931; Prigogine 1962, 1967), but more 
from the differential, local, instantaneous viewpoint than from the global, integral view of entire 
optimized processes. Under some circumstances, optimizing one of these quantities is equivalent to 
optimizing another. For example, minimizing the entropy production is equivalent to minimizing the 
loss of availability, at least in those cases in which the irreversibilities can be represented as 
spontaneous heat flows (Salamon et al. 1980b). 

 Salamon and Nitzan (1981) have optimized the Curzon-Ahlborn engine for a number of these 
objective functions. Assuming the working fluid to be in contact with the hot reservoir for the period 
τ1 and the cold reservoir for the period τ2, the optimal time distributions are shown in Fig. 3. The 
diagonal  τ = τ1 + τ2  indicates fixed total cycle time, and only processes above the curve labeled ‘zero 
power’ produce positive power. It is quite obvious that different criteria of merit dictate different 
operating conditions for the process. Even when not knowing the precise objective function but only 
that it belongs to a specified class, one can sometimes say a good deal about the possible optimal 
behavior of the system. If one considers the Curzon-Ahlborn engine to be a model of a power plant 
which buys heat (coal) at the unit price α and sells work (electricity) at the unit price β, its net revenue 
is  ∏ = βw – αq1. All solutions to the problem of maximizing this revenue are bounded on one side by 
the solutions to the maximum power problem (when α is insignificant compared to β) and on the other 
side by the solutions corresponding to minimum loss of availability (when coal and electricity are 
priced according to their availability contents). While this is a very simple example, this approach has 
far reaching possibilities for describing biological, ecological, and economic systems. 
 

 
Figure 3.  If an endoreversible engine (Fig. 1) spends time τ1 in contact with the 
hot reservoir and τ2 in contact with the cold reservoir, the optimal proportioning 
between τ1 and τ2 depends on what one chooses to optimize, as indicated. The 
locus of maximum revenue for a power producing system falls in the shaded area 
for any choice of prices, as described in the text. Only contact times above the 
hyperbola marked ‘zero power’ actually correspond to positive power production. 

 
3.3  Paths for endoreversible engines 
 Maximum power.  Rubin (1979) was the first to apply optimal control theory to a finite-time 
system. He calculated the optimal path for the endoreversible engine of Fig. 1 which maximizes its 
power output. Without any restrictions as to type of branches, but only limiting the reservoir 
temperatures, heat conductances, and rate of change of volume, he found the optimal cycle to consist 
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of six branches: two isotherms and four maximum-power branches, but no adiabats. The optimal 
controls (reservoir temperature, heat conductance, and relative rate of volume change) are shown in 
Fig. 4 and the optimal state variables (temperature and pressure) in Fig. 5. Note that only the extreme 
available temperatures, TH and TL, are required, as is the maximum conductance to the reservoirs. The 
adiabats of a Carnot cycle are replaced by the maximum-power branches along which the volume 
changes at its maximum permissible rate while the working fluid is still in contact with one or the 
other heat reservoir. Thus the optimal cycle is never isolated from both its reservoirs. If the limitation 
on the rate of volume change is lifted, these new branches proceed instantaneously and in effect 
become adiabats. This optimal cycle is the finite-time equivalent of the Carnot cycle in reversible 
thermodynamics and serves the same purpose, viz. as an idealized reference processes for evaluation 
of real cycles. Curzon and Ahlborn’s (1975) assumption of an interior Carnot cycle in their system 
(see Sect. 1.2) is now justified by this optimization. 

 

 
Figure 4.  The optimal controls over a period τ for an unrestricted optimization of 
the endoreversible engine (Fig. 1). c*(t) = V̇ /V  is the relative rate of change of 
volume, and κ*(t) is the heat conductance to the reservoir with temperature TR*(t). 
Note that, except for the rate of change of volume on the isothermal branches [0;t1] 
and [t3;t4], only the extreme values of the controls are required. 

 
 Minimum entropy production.  About the same time we analyzed the performance of 
endoreversible engines in terms of their entropy production (Salamon et al. 1980b). Minimizing that is 
equivalent to minimizing the loss of availability, but not to maximizing efficiency or power, as most 
other studies have done. The system exchanges generalized fluxes with the surroundings at a rate 
which depends on the generalized forces in a completely arbitrary way, but not on time or any time 
derivative of the forces. Then, regardless of whether the internal or the external temperature can be 
controlled by the operator, minimum total entropy production always implies constant rate of entropy 
production on each branch of the cycle. If the fluxes are linear in the forces, this constant entropy 
production rate must be the same on all branches of the cycle. If the class of systems is further 
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restricted to admit only Fourier heat flow through a conductance κ to the reservoir, one finds that the 
total entropy produced in a cycle with period τ is bounded by 

 

 
Figure 5.  The optimal trajectories associated with the controls in Fig. 4. V*(t) and 
T*(t) are the volume and temperature of the working fluid, respectively. 

 

∆S ≤ 
⎝
⎜
⎛

⎠
⎟
⎞∑

i
 |σi|  2/κτ, (3.6) 

where σi is the entropy change of the working fluid on branch i. Combine this expression with the 
equality form of the Second Law of thermodynamics, eq. (1.3), and we see that the work W produced 
by such an engine is bounded by 

W ≤ Wrev – T0 
⎝
⎜
⎛

⎠
⎟
⎞∑

i
 |σi|  2/κτ, (3.7) 

where T0 is the temperature of the environment with respect to which availability is defined. This 
expression is a particularly clear exposition of one kind of cost of finite-time operation. 

 The main result, that the ‘best process’ is associated with a constant rate of entropy production, is 
reminiscent of Prigogine’s (1967) theorem of irreversible thermodynamics which states that the 
entropy production rate is minimum at near-equilibrium steady states. Both results are derived from 
variational principles. However, the approach of Prigogine (‘irreversible thermodynamics’) involves 
instantaneous quantities while our formalism (‘finite-time thermodynamics’) investigates the extrema 
of integrals over time. 
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 Staging.  Endoreversible engines have the same staging property as Carnot engines: If one puts 
two or more engines of the same kind in sequence, then the whole system behaves as a single engine 
of the that kind (Rubin and Andresen 1982). In our unconstrained optimization the interface between 
the two stages, which for the present model is the intermediate temperature and the relative timing of 
the two engines, is arbitrary and can be used to satisfy other, non-thermodynamic constraints. A 
possible constraint which could be added to make the problem more realistic concerns the volume 
swept by the two engines, e.g. the total volume or the sum of the compression ratios. However, if we 
want to go into such detail, we must also specify the amount of working fluid in each engine and its 
equation of state, and those new parameters precisely balance the added constraints, so the interface is 
still arbitrary. This conclusion implies that one of the stages could shrink to zero without it being 
detected from the outside. There is thus no thermodynamic reason for the usual practice of dividing 
turbines, compressors, refrigerators, and the like into stages. 

 This staging property of endoreversible engines makes it a unique building block for constructing 
and analyzing more complex finite-time thermodynamic systems — much like the Carnot engine is in 
reversible thermodynamics. 

 
3.4  Design of distillation column by equal thermodynamic distance 
In Sect. 2.4 we saw that the concept of thermodynamic length not only provided a lower bound on 
dissipation (eqs. (2.14), (2.17), and (2.22)), it also predicted which path would achieve that bound, 
namely operation at constant thermodynamic speed. We will use that line of thought to improve the 
performance of a conventional distillation column. 
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Figure 6.  (a) Sketch of a conventional distillation column with feed, distillate, and 
waste (bottoms) rates F, D, W, heating and cooling rates qW and qD, and tray 
numbers n.  (b) Sketch of an equal-thermodynamic-distance distillation column 
with heating or cooling on all n trays. 
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 In a conventional distillation column, Fig. 6a, heat is added and withdrawn only in the reboiler and 
the condenser, respectively. In such a column the internal distribution of temperature T and mole 
fractions x of light and heavy components is fixed exclusively by the laws of energy and mass 
conservation. In most columns that leads to an S-shaped curve of mole fractions versus plate number 
with most of the variation occurring near the end points of the column, connected with a flat stretch 
around the feed point (see Fig. 7). A qualitatively similar picture emerges for the temperature. This 
profile implies that the major part of the entropy production in the distillation process occurs near the 
ends of the column and is thus not uniformly distributed. Even more importantly, if the number of 
plates is increased, essentially only the middle flat section is extended while the segments of rapid 
variation are unchanged. This means that dissipation does not approach zero as the number of plates 
goes to infinity. 
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Figure 7.  The liquid composition profile x as a function of tray number, counted 
from the condenser, for conventional (solid) and equal-thermodynamic-distance 
(dashed) separation of an ideal benzene-toluene system. 

 
 The principle of constant thermodynamic speed for continuous systems, or equivalently equal 
thermodynamic distance for discrete systems, aims at minimizing total dissipation in the column by 
distributing it evenly among the plates whatever their number (Andresen and Salamon 2000). In 
Nulton et al. (1985) a general quasistatic step process was optimized, i.e. a process composed of N 
discrete steps where the system equilibrates fully after each step. The standard description of a 
distillation column is exactly such a process where it is assumed that gas and liquid come to 
equilibrium at a particular temperature on each plate. Entropy is produced when the up- and down-
moving flows encounter liquid on the next plate at slightly different temperature and composition. 
 The result of the optimization (Nulton et al. 1985), for processes not too far from equilibrium, was 
that the minimum of the entropy production 

∆Su ≥ L2/2N (3.8) 
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is achieved when the thermodynamic distance between each pair of plates is kept constant, i.e. they are 
equidistant in that measure. L is the total thermodynamic distance from one end of the column to the 
other. For any other distribution of the total length along the column dissipation is larger. 

 Using the metric eq. (2.18), the thermodynamic distance DS
k from plate k–1 to plate k is equal to 

DS
k = kk

S
k XMX ∆∆  (3.9) 

where  ∆Xk = Xk – Xk–1  is the difference in extensities from plate k–1 to plate k. The total 
thermodynamic length of the column is thus 

LS = ∑
k=1

N
 DS

k . (3.10) 

 Two consequences of this general result are immediate: dissipation (here entropy production) must 
be equally distributed along the column; and the total dissipation approaches zero as N, the number of 
plates, goes to infinity (eq. (3.8)), i.e. the separation becomes reversible. 

 In binary distillation 8 extensive quantities are involved on each plate, besides the objective 
function entropy, namely enthalpy, volume, mole number of light component, and mole number of 
heavy component, each one for both gas and liquid, leading to an 8×8 metric matrix. Fortunately a 
number of relations allow one to reduce the dimensionality of the problem dramatically. First of all, 
the two components are usually considered non-interacting, at once making MS block-diagonal. Next, 
constant pressure in the column, energy and mass conservation, and the gas-liquid equilibrium 
equation reduce the problem to just one free variable which may conveniently be taken to be 
temperature. After a lot of algebra the plate-to-plate distance finally becomes simply 

DS
k = 

Cr
k

Tk   ∆T, (3.11) 

where Cr is an effective heat capacity involving all the constraints mentioned above in a complicated 
expression. 
 The computational procedure is to integrate eq. (3.11) from the distillate temperature TD to the 
reboiler temperature TB (both of course given by the required product purities) to obtain the total 
thermodynamic column length LS. The distance from one plate to the next must then be fixed at 
DS = LS/N for optimal performance by adjusting the plate temperatures appropriately according to 
eq. (3.11). 

 Obviously such freedom of adjustment does not exist in a conventional adiabatic column. Rather, 
it is necessary to allow individual heat exchange with each plate to maintain it at the desired 
temperature, see Fig. 6b. This heat addition/removal is of course part of the energy balance used 
above. The result of the whole calculation is either a graph like Fig. 7 specifying the temperature of 
each plate in the column or a graph of the amount of heat added/removed at each plate. It should be 
noted that the total amount of heat used to perform a certain equal-thermodynamic-distance separation 
is only marginally different from that required by a conventional column, but a large part of it is used 
over a much smaller temperature difference than TB to TD leading to a correspondingly smaller 
entropy production. 
 
3.5  Simulated annealing. 
 The global optimization procedure simulated annealing (Kirkpatrick et al. 1983) is intimately 
connected with a real thermodynamic process. Specifically, if the correspondence with statistical 
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mechanics implied in the simulated annealing procedure involving phase space and state energies is 
valid, then further results from thermodynamics will probably also be possible to carry over to 
simulated annealing. 

 So far all suggested simulated annealing temperature paths (annealing schedules) have been of the 
a priori type and thus have not adjusted to the actual behavior of the ‘system’ as the annealing 
progresses. Examples of such paths are 

T(t) = a exp(–t/b) (3.12) 
T(t) = a/(b+t) (3.13) 
T(t) = a/ln(b+t). (3.14) 

The real annealing of physical systems often has rough parts where the surrounding temperature must 
be decreased slowly due to phase transitions or regions of large heat capacity or slow internal 
relaxation. The same behavior is seen in the abstract systems, so annealing schedules which take such 
variation into account are preferable in order to keep computation time at a minimum for a given 
accuracy of the final result (Ruppeiner 1988). Since asking a question (= one evaluation of the energy 
function) in information theoretic terms is equivalent to producing one bit of entropy, the temperature 
path T(t) which produces minimum entropy, as calculated with thermodynamic length [c.f. eq. (2.17)], 
at once suggests itself as the optimal simulated annealing schedule: 

dT
dt   = – 

vT
ε C

  (3.15) 

or equivalently 

v
)T(EE eq =

σ

−
. (3.16) 

In these expressions v is the (constant) thermodynamic speed, C and ε are the heat capacity and 
internal relaxation time of the system, respectively, <Ε> and σ the corresponding mean energy and 
standard deviation of its natural fluctuations, and finally Eeq(T) is the internal energy the system 
would have if it were in equilibrium with its surroundings at temperature T. The physical 
interpretation of eq. (3.16) is that the environment should at all times be kept v standard deviations 
ahead of the system. Similarly eq. (3.15) indicates that the annealing should slow down where internal 
relaxation is slow and where large amounts of ‘heat’ have to be transferred out of the system. In case 
C and ε do not vary with temperature, eq. (3.15) integrates to the standard schedule eq. (3.12). 
 The extra temperature dependent variables of the constant thermodynamic speed schedule of 
course require additional computational effort. Since systems often change considerably in a few 
steps, ergodicity is not fulfilled, so the use of time averages to obtain <Ε>, σ, C, and ε is usually not 
satisfactory. Instead we (Andresen et al. 1988) suggest running an ensemble of systems in parallel, i.e. 
with the same annealing schedule, in the true spirit of the analogy to statistical mechanics. Then these 
variables can be obtained anytime as true ensemble averages based on the system degeneracies  
pi = p(Ei): 

Z(T) = ∑ −
i

ii )T/Eexp(p  (3.17) 

E(T) = T2 
d lnZ

dt   (3.18) 
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C(T) = 
dE
dT  = 

2

2

T

)E(∆
 (3.19) 

ε(T) = 
–1

lnλ2
  ≈ 

T2 C(T)

∑
i

 pi ∑
j>i

 (Ej–Ei)2  Pji  exp(–Ei/T)
  , (3.20) 

where λ2 is the second largest eigenvalue of the thermalized version of the transition probability 
matrix P among all the energy levels (λ1 = 1  corresponds to equilibrium). 
 But where does one get the degeneracies pi from? Actually (Andresen et al. 1988), information to 
calculate the temperature-independent (or infinite-temperature, if you prefer) transition probability 
matrix P can be accumulated during the annealing run by simply adding up in a matrix Q the number 
of attempted moves (not just the accepted ones) from level i to j as the calculation progresses. 
Normalization of Q yields a good estimate of P, 

Pji = Qji / ∑
k

 Qki . (3.21) 

The degeneracies p are then the eigenvector of P corresponding to the eigenvalue 1. 
 This use of ensemble annealing is particularly well suited for implementation on present day 
parallel computers. A further analysis of its performance has been carried out by Ruppeiner et al. 
(1990), and the trade-off between ensemble size and duration of annealing for fixed total computation 
cost has been addressed by Pedersen et al. (1990). 
 
 
4.  Summary 
 Finite-time thermodynamics was ‘invented’ in 1975 by R. S. Berry, P. Salamon, and myself as a 
consequence of the first world oil crisis. It simply dawned on us that all the existing criteria of merit 
were based on reversible processes and therefore were totally unrealistic for most real processes. That 
made an evaluation of the potential for improvement of a given process quite difficult. 
 Finite-time thermodynamics is developed from a macroscopic point of view with heat 
conductances, friction coefficients, overall reaction rates, etc. rather than based on a microscopic 
knowledge of the processes involved. Consequently most of the ideas of traditional thermodynamics 
have been assimilated, e.g. the notions of thermodynamic potential (Sect. 2.1) and availability 
(Sect. 2.2). At the same time we have seen new concepts emerge, e.g. the non-equivalence of well-
honored criteria of merit (Sect. 3.2), the importance of power as the objective (Sect. 1.2 and 3.2), the 
generality of the endoreversible engine (Sect. 3.3), and in particular thermodynamic length (Sect. 2.4). 
Several of these abstract concepts have been successfully applied to practical optimizations (see e.g. 
Hoffmann et al. 1985, Mozurkewich and Berry 1981, 1982, Hoffmann et al. 1997, 2003). In line with 
the global philosophy of finite-time thermodynamics Gordon and Zarmi (1989) have calculated the 
global wind pattern. 
 More recently the notions and results of finite-time thermodynamics, at times in connection with 
statistical mechanics and information theory, have been used to perfect the global optimization method 
simulated annealing (Sect. 3.5). However, the surface in only scratched, there is still plenty of room 
for inspiration from such well-known concepts as state entropy, free energy, and transition state 
theory. 
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