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Abstract. A single endoreversible engine can operate as a cooler, a true heat engine, a heat pump,
or a refrigerator. We investigate how many di�erent modes of operation a combined system of
two endoreversible engines may display. Special attention is paid to the independent combined
system which neither consumes nor supplies power.

1. Introduction

Let us consider a Curzon-Ahlborn endoreversible engine [1]. The core is a reversible
heat engine (e.g. Carnot), converting part of the heat 
ow Q into the work 
owW .
Further, we have two reservoirs at constant temperature: T1 and T2. Here T1 > T2.
Finally, we have two linear conductances: g1 and g2. The points where the reversible
engine is connected to the conductances are assumed to have temperatures T3 and
T4, such that T1 � T3 = Q=g1 and T4 � T2 = (Q�W )=g2, see Fig. 1a.

We express that the inner part of the engine produces no entropy:

Q

T3
=

Q�W

T4
(1)

or
Q

T1 �Q=g1
=

Q�W

T2 + (Q�W )=g2
; (2)
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Fig. 1. Endoreversible engines: (a) endoreversible engine, (b) two combined endoreversible
engines, (c) three-heat-reservoir engine.

where W is the produced power.
With the de�nition of �,

� = W=Q ; (3)

this yields

W (�) =
g1g2

g1 + g2
�
T1 � T2 � T1�

1� �
: (4)

We are able to �nd the reversible value �r of � by imposing W = 0 (because no
heat leaks are considered here). This yields, of course,

�r = 1� T2=T1 (5)

in accordance with Carnot's theorem. As a result we can rewrite (4) as

W (�) = c �
� � �r

� � 1
; (6)

where c is a constant,

c = T1
g1g2

g1 + g2
; (7)

see Fig. 2.
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Fig. 2. Power/e�ciency curves of an endoreversible engine.

It is interesting to note that the points � = 0 and � = �r divide the �-axis into
three di�erent parts [2, 3]:

(a) If � < 0, then the engine works as a cooler (speeding up an otherwise voluntary
heat transfer).

(b) If 0 < � < �r, then the engine works as a true heat engine.

(c) If �r < � < 1, then the engine works as a heat pump or a refrigerator (moving
heat against a temperature gradient).

If we want to be complete, we have to consider also the case � > 1. However,
the condition � > 1 necessarily involves either a negative T3 or a negative T4.
Negative temperatures are signi�cant for some physical systems (e.g. lasers), but
the possibility of a reversible engine working between two reservoirs of opposite
temperature sign is a matter of intense debate [4 { 7]. We therefore believe such a
Carnot engine working between negative T3 and positive T4, or vice versa, can be
omitted in the framework of energy physics and engineering. In the below analyses
of the present paper only the three cases with � < 1 will be considered.

2. Two Endoreversible Engines

Now we join two such Curzon-Ahlborn engines together: one with single prime: T 0

1
,

T 0

2
, T 0

3
, T 0

4
, and �0 and one with double prime: T 00

1
, T 00

2
, T 00

3
, T 00

4
, and �00. We denote
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by W the total delivered power W 0+W 00 (see Fig. 1b). Without loss of generality,
we can attribute primes in such a way that �0

r
� �00

r
.

2.1. The general case

We now have two degrees of freedom: �0 and �00. How then is the (�0, �00)-plane
divided into di�erent parts?

As explained above, each endoreversible engine has three regions on the �-axis.
Therefore, one expects at �rst sight that two endoreversible engines should have
3�3=9 regions in the (�0, �00)-plane, separated by six simple straight lines �0 = 0,
�0 = �0

r
, �0 = 1, �00 = 0, �00 = �00

r
, and �00 = 1.

However, as we shall see below, the region

�0
r
< �0 < 1 and 0 < �00 < �00

r

will be divided further into two subregions by the line �00 = �0, resulting in a total
of 10 regions (see Fig. 3a).
First we consider three (rather trivial) rectangular regions (denoted A through C):

A. In the region

0 < �0 < �0
r

and 0 < �00 < �00
r

two heat engines are working together for the production of power W . Uncor-
related choices for T 0

1
, T 0

2
, T 00

1
and T 00

2
are of little practical signi�cance. More

interesting situations occur when the two engines operate either in parallel
(e.g. T 00

2
= T 0

2
) or in series (e.g. T 00

2
= T 0

1
), see references [8] and [9].

B. In the region

�0 < 0 and �00 < 0

two coolers are powered independently. Again, these two devices can be pow-
ered either in parallel or in series.

C. In the region

�0
r
< �0 < 1 and �00

r
< �00 < 1

two heat pumps or refrigerators are powered independently (either in par-
allel or series). The case where two refrigerators are combined in series was
discussed in reference [10].

Then we have four more simple rectangular regions (D through G):

D. In the region

�0
r
< �0 < 1 and �00 < 0

one heat pump or refrigerator (0) and one cooler (00) are operating.
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Fig. 3. Division of the (�0, �00)-plane for two coupled endoreversible engines: (a) basic division
due to character of operation, (b) curve of no net work exchange (W = 0).
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E. In the region

�0 < 0 and �00
r
< �00 < 1

one heat pump or refrigerator (00) and one cooler (0) are operating.

F. In the region

0 < �0 < �0
r

and �00 < 0

one endoreversible engine (0) works as a heat engine and the other engine (00)
works as a cooler.

G. In the region

�0 < 0 and 0 < �00 < �00
r

one endoreversible engine (00) works as a heat engine and the other one (0) as
a cooler.

Further we have one triangular region (H) and one pentagonal region (I):

H. In the region

�0
r
< �0 < 1 ; 0 < �00 < �00

r
and �00 > �0

the more e�cient engine (00) works as a heat engine and the other engine (0)
as a heat pump.

� When T 00

2
= T 0

1
, the combined system may be called `the �rst type heat

pump' or `true heat pump' because the total heating (1� �00)Q00 �Q0 of
the reservoir at temperature T 00

2
is larger than Q00 alone, see Figure 1b0

of reference [11]. We may thus speak of a `heating booster'. It should be
pointed out that the refrigerators in Figure 1 of reference [12] and Figure
1 of reference [13] also operate in this region.

� When T 00

1
= T 0

2
, the combined system may be called `the second type

heat pump' or `heat transformer' because the total heating �Q0 of the
reservoir at temperature T 0

1
is smaller than the heat �(1 � �0)Q0 + Q00

withdrawn from the reservoir at temperature T 0

2
but at a higher tem-

perature than the source at T 00

1
, see reference [14]. We may speak of a

`temperature booster', since the high temperature T 00

1
is used to realise

an even higher temperature T 0

1
, see Figure 1b of reference [11].

� When T 00

2
= T 0

2
, the combined system may be conceived as a heat pump

or a refrigerator.

� Finally, when T 00

1
= T 0

1
, the combined system may be conceived as a heat

transformer.
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I. In the region

�0
r
< �0 < 1 ; 0 < �00 < �00

r
and �00 < �0

the less e�cient engine (00) works as a heat engine and the other engine (0) as
a heat pump.

� When T 00

2
= T 0

1
or T 00

1
= T 0

2
, the combined systems are similar to those in

region H [11 { 14].

� When T 00

2
= T 0

2
or T 00

1
= T 0

1
, the combined systems are meaningless

because the same heating load may be realised more e�ciently by direct
conduction.

Thus there exists an obvious di�erence between regions H and I.

J. In region
0 < �0 < �0

r
and �00

r
< �00 < 1

one engine (0) works as a heat engine and the other (00) as a heat pump or a
refrigerator.

� When T 0

2
= T 00

1
or T 0

1
= T 00

2
, the combined systems are similar to case H.

� When T 0

2
= T 00

2
, the combined system may be conceived as a heat trans-

former.

� When T 0

1
= T 00

1
, the combined system may be conceived as a heat pump

or a refrigerator.

Finally, the rest of the (�0, �00)-plane, i.e.

K. The region
�0 > 1 or �00 > 1

is the large eleventh region with negative temperatures, which is unreal in
engineering, as explained above in the Introduction.

2.2. The special case W = 0

In general, W is not equal to 0 for the combined system of two endoreversible
engines, so that they form together no selfcontained system. The case W = 0
is, however, a very interesting one, as it represents an independent system, nei-
ther consuming nor producing power. In other words: the power produced by one
endoreversible engine is consumed by the other endoreversible engine. We then
have only one degree of freedom, as �0 and �00 are correlated by the condition

W (�0; �00) = 0 ; (8)
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i.e.

c0�0(�0 � �0
r
)(�00 � 1) + c00�00(�00 � �00

r
)(�0 � 1) = 0 : (9)

Thus we are on a third-degree curve in the (�0, �00)-plane. This polynomial
curve passes through the four points f0, 0g, f0, �00

r
g, f�0

r
, 0g, and f�0

r
, �00

r
g. It

also passes through the �ve regions F, G, H, I, and J, subdividing these into ten
subregions, �ve of which (Fi, Gi, Hi, Ii, and Ji) lie inside the closed polynomial
curve (producing net power: W > 0), and �ve of which (Fo, Go, Ho, Io, and Jo) lie
outside the curve (thus consuming net power: W < 0), see Fig. 3b.

The combined systems operating in the 6 regions inside the curve have power
output. The combined systems operating in the 9 regions (the K-region is not
considered) outside the curve need power input. The combined systems operating
on the curve are the independent systems which have only one degree of freedom.

Which parameter should be chosen as the single degree of freedom? We have
two equivalent choices:

 = �0=�00 = (W 0=Q0)=(W 00=Q00) = �Q00=Q0 ; (10)

� = �00=�0 = (W 00=Q00)=(W 0=Q0) = �Q0=Q00 : (11)

For convenience we choose  . The usefulness of this choice can be demonstrated by
e.g. calculating Q0 and Q00, the amounts of pumped heat. As (see (6) and (7))

Q0 = c0
�0 � �0

r

�0 � 1
; (12)

we can eliminate �0 and �00 from the set (9), (10), (12) and obtain an (implicit)
expression for Q0( ):

 ( � 1)Q02 � (c0 2 � c00�00
r
 � c0�0

r
 + c00)Q0 � c0c00(�00

r
 � �0

r
) = 0 : (13)

Analogously, we may obtain a quadratic equation for Q00, but it is advantageous
to make use of

Q00( ) = � Q0( ) ; (14)

once Q0( ) is constructed from (13), see Fig. 4.
On the curve W (�0; �00) = 0 in Fig. 3b, the variable  plays the role of a

parameter which evolves along the curve. The parameter representation f�0( );
�00( )g of the curve can be constructed. This only requires the solution of a quadrat-
ic equation.

Note that we have one reversible value of  :

 r = �0
r
=�00

r
; (15)

for which �0 = �0
r
and �00 = �00

r
. For  = �(c00=c0)(1= r) (for short:  =  s) we

have �0 = �00 = 0. We �nally remark that, in contrast to �0 and �00, the quantity
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Fig. 4. Power/e�ciency curves of two combined endoreversible engines.

 can take any value from �1 to +1, and thus may be larger than unity. Thus
the  -axis of the combined endoreversible engines is di�erent from the �-axes of
the separate endoreversible engines.

The  -axis is divided into 5 parts. We shortly recall here the di�erent modes of
operation:

(F) and (G): If  < 0, then one engine works as a true heat engine and the other
as a cooler.

(H), (I) and (J): If 0 <  , then one engine works as a true heat engine and the
other as a refrigerator. The combined system may work as a true heat pump,
a refrigerator, or a heat transformer, depending on their relative parameters.

The symmetric results, i.e. the results in terms of �, can be easily constructed.

3. Alternative Heat Engine

Next we consider the engine of references [11], [12] and [14], which dispenses with
work exchange all together. It has not four, but only three external temperatures:
T2, T

0

1
, and T 00

1
and thus may be viewed either as a compact version of the combined

endoreversible engines (Fig. 1b) or a generalized version of a single endoreversible
engine (Fig. 1a) with a heat reservoir instead of the work reservoir. Analogously
there are not four, but only three intermediate temperatures: T4, T

0

3
, and T 00

3
, see

Fig. 1c. The scheme is similar to the `tri-cycle' engine proposed by Andresen et al.
[15]. Without loss of generality we can attribute primes such that T 0

1
� T 00

1
.
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This thermal engine has only one degree of freedom, �, which we de�ne as

� =
(T 0

3
� T4)T

00

3

T 0

3
(T 00

3
� T4)

: (16)

We express conservation of entropy in the reversible `core' as

Q0

T 0

3

+
Q00

T 00

3

=
Q0 +Q00

T4
: (17)

From these two equations it follows immediately that

Q00 = ��Q0 : (18)

Eliminating Q00 from this result and from

Q0

T 0

1
�Q0=g0

1

+
Q00

T 00

1
�Q00=g00

1

=
Q0 +Q00

T2 + (Q0 +Q00)=g2
(19)

yields:

�(� � 1)Q02 � d (d0�2� f� + d00)Q0 � d [ T 0

1
(T 00

1
� T2)� � T

00

1
(T 0

1
� T2) ] = 0 ; (20)

where

d = g0
1
g00
1
g2=(g

0

1
+ g00

1
+ g2) ; (21)

d0 = T 0

1
(1=g00

1
+ 1=g2) ; (22)

d00 = T 00

1
(1=g0

1
+ 1=g2) and (23)

f = (T 0

1 � T2)=g
00

1 + (T 00

1 � T2)=g
0

1 + (T 00

1 + T 0

1)=g2 : (24)

Analogously, we can eliminate Q0 in order to �nd an equation for Q00. Both Q0 and
Q00 are zero for � equal to its reversible value,

�r =
(T 0

1
� T2)T

00

1

T 0

1
(T 00

1
� T2)

: (25)

Since T 0

1
� T 00

1
, we have �r � 1.

Equation (20) is not identical to, but nevertheless very similar to equation (13).
Therefore, a graph representing curves Q0(�) and Q00(�) deduced from equations
(18) and (20) is quite similar to Fig. 4.

4. Conclusion

Whereas the single endoreversible engine has three modes of operation (cooler,
engine, pump), we �nd ten modes of operation for the combination of two endore-
versible engines. In the special case of a closed combination, exchanging no power
with the external world, �ve modes may be distinguished.
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